
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6798851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenotypic characterization of primary cardiac fibroblasts from patients with HFpEF. PLoS ONE, 2022, 17, e0262479.	2.5	1
2	Organized Chaos: Deciphering Immune Cell Heterogeneity's Role in Inflammation in the Heart. Biomolecules, 2022, 12, 11.	4.0	11
3	The Extracellular Matrix. , 2022, , .		0
4	Mechanics & Matrix: Positive Feedback Loops between Fibroblasts and ECM Drive Interstitial Cardiac Fibrosis. Current Opinion in Physiology, 2022, , 100560.	1.8	2
5	Mechanisms that limit regression of myocardial fibrosis following removal of left ventricular pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H165-H175.	3.2	5
6	Lysyl oxidase directly contributes to extracellular matrix production and fibrosis in systemic sclerosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L29-L40.	2.9	33
7	Molecular, Gene, and Cellular Mechanism. , 2021, , 1-10.		Ο
8	SPARC production by bone marrow-derived cells contributes to myocardial fibrosis in pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H604-H612.	3.2	15
9	Cross your heart? Collagen cross-links in cardiac health and disease. Cellular Signalling, 2021, 79, 109889.	3.6	30
10	The Influence of the Extracellular Matrix in Inflammation: Findings from the SPARCâ€Null Mouse. Anatomical Record, 2020, 303, 1624-1629.	1.4	25
11	Inhibition of transglutaminase activity in periodontitis rescues periodontal ligament collagen content and architecture. Journal of Periodontal Research, 2020, 55, 107-115.	2.7	7
12	Selective serotonin reuptake inhibitors (SSRI) affect murine bone lineage cells. Life Sciences, 2020, 255, 117827.	4.3	4
13	Pressure overload generates a cardiac-specific profile of inflammatory mediators. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H331-H340.	3.2	13
14	Regulation of cell behavior by extracellular proteins. , 2020, , 205-215.		2
15	Focusing Heart Failure Research on Myocardial Fibrosis to Prioritize Translation. Journal of Cardiac Failure, 2020, 26, 876-884.	1.7	4
16	T-cell regulation of fibroblasts and cardiac fibrosis. Matrix Biology, 2020, 91-92, 167-175.	3.6	26
17	lt's a SMAD, SMAD World. JACC Basic To Translational Science, 2019, 4, 54-55.	4.1	1
18	Changes in the crystallographic structures of cardiac myosin filaments detected by polarization-dependent second harmonic generation microscopy. Biomedical Optics Express, 2019, 10, 3183.	2.9	8

#	Article	IF	CITATIONS
19	Cardiac macrophages promote diastolic dysfunction. Journal of Experimental Medicine, 2018, 215, 423-440.	8.5	314
20	Production and purification of recombinant human SPARC. Methods in Cell Biology, 2018, 143, 335-345.	1.1	3
21	2027 The role of lysyl oxidase in systemic sclerosis-associated lung fibrosis. Journal of Clinical and Translational Science, 2018, 2, 32-33.	0.6	0
22	Iron overload: what's TIMP-3 got to do with it. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1259-H1261.	3.2	0
23	Increased macrophage-derived SPARC precedes collagen deposition in myocardial fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H92-H100.	3.2	43
24	Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E1027-E1035.	3.5	40
25	Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing. Scientific Reports, 2016, 6, 32635.	3.3	42
26	The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: Does expression of SPARC by macrophages influence outcomes?. Journal of Molecular and Cellular Cardiology, 2016, 93, 156-161.	1.9	44
27	SPARC/osteonectin in mineralized tissue. Matrix Biology, 2016, 52-54, 78-87.	3.6	217
28	Decreased Mechanical Strength and Collagen Content in SPARC-Null Periodontal Ligament Is Reversed by Inhibition of Transglutaminase Activity. Journal of Bone and Mineral Research, 2015, 30, 1914-1924.	2.8	16
29	Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model. PLoS ONE, 2015, 10, e0140273.	2.5	29
30	Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection Fraction. Circulation, 2015, 131, 1247-1259.	1.6	509
31	Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly. Journal of Molecular and Cellular Cardiology, 2015, 84, 70-80.	1.9	34
32	Secreted protein acidic and rich in cysteine facilitates age-related cardiac inflammation and macrophage M1 polarization. American Journal of Physiology - Cell Physiology, 2015, 308, C972-C982.	4.6	46
33	pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1. PLoS ONE, 2015, 10, e0127876.	2.5	9
34	Age and SPARC Change the Extracellular Matrix Composition of the Left Ventricle. BioMed Research International, 2014, 2014, 1-7.	1.9	39
35	Regulation of Cell Behavior by Extracellular Proteins. , 2014, , 279-290.		5
36	Myocardial fibroblast–matrix interactions and potential therapeutic targets. Journal of Molecular and Cellular Cardiology, 2014, 70, 92-99.	1.9	76

#	Article	IF	CITATIONS
37	Age and SPARC dependent cardiac collagen changes (1120.7). FASEB Journal, 2014, 28, 1120.7.	0.5	Ο
38	Cellular Mechanisms of Tissue Fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression. American Journal of Physiology - Cell Physiology, 2013, 304, C393-C402.	4.6	88
39	The Effects of Age and the Expression of SPARC on Extracellular Matrix Production by Cardiac Fibroblasts in 3-D Cultures. PLoS ONE, 2013, 8, e79715.	2.5	10
40	Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1128-H1134.	3.2	35
41	Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H234-H240.	3.2	46
42	Diverse biological functions of the SPARC family of proteins. International Journal of Biochemistry and Cell Biology, 2012, 44, 480-488.	2.8	203
43	Losartan Slows Pancreatic Tumor Progression and Extends Survival of SPARC-Null Mice by Abrogating Aberrant TGFÎ ² Activation. PLoS ONE, 2012, 7, e31384.	2.5	69
44	β3 Integrin in Cardiac Fibroblast Is Critical for Extracellular Matrix Accumulation during Pressure Overload Hypertrophy in Mouse. PLoS ONE, 2012, 7, e45076.	2.5	50
45	The Function of SPARC as a Mediator of Fibrosis. Open Rheumatology Journal, 2012, 6, 146-155.	0.2	71
46	β3 integrin/PDGF receptor synergistic signaling mediates cardiac fibrosis in a mouse model of pressure overload hypertrophy. FASEB Journal, 2012, 26, .	0.5	0
47	The regulatory function of SPARC in vascular biology. Cellular and Molecular Life Sciences, 2011, 68, 3165-3173.	5.4	81
48	Inactivation of SPARC enhances high-fat diet-induced obesity in mice. Connective Tissue Research, 2011, 52, 99-108.	2.3	34
49	SPARC mediates early extracellular matrix remodeling following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H497-H505.	3.2	66
50	SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H841-H847.	3.2	66
51	SPARC/Osteonectin Functions to Maintain Homeostasis of the Collagenous Extracellular Matrix in the Periodontal Ligament. Journal of Histochemistry and Cytochemistry, 2010, 58, 871-879.	2.5	40
52	Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H614-H622.	3.2	110
53	Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. DMM Disease Models and Mechanisms, 2010, 3, 57-72.	2.4	101
54	Expression in SPARC-null mice of collagen type I lacking the globular domain of the α1(I) N-propeptide results in abdominal hernias and loss of dermal collagen. Matrix Biology, 2010, 29, 559-564.	3.6	7

#	Article	IF	CITATIONS
55	Cardiac extracellular matrix remodeling: Fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). Journal of Molecular and Cellular Cardiology, 2010, 48, 544-549.	1.9	93
56	Pressure Overload–Induced Alterations in Fibrillar Collagen Content and Myocardial Diastolic Function. Circulation, 2009, 119, 269-280.	1.6	127
57	The role of SPARC in extracellular matrix assembly. Journal of Cell Communication and Signaling, 2009, 3, 239-246.	3.4	204
58	Quantification of Protein Expression Changes in the Aging Left Ventricle of <i>Rattus norvegicus</i> . Journal of Proteome Research, 2009, 8, 4252-4263.	3.7	58
59	SPARC Mediates Early Extracellular Matrix Remodeling Following Myocardial Infarction. FASEB Journal, 2009, 23, 793.2.	0.5	0
60	SPARC Regulates Processing of Procollagen I and Collagen Fibrillogenesis in Dermal Fibroblasts. Journal of Biological Chemistry, 2007, 282, 22062-22071.	3.4	144
61	Expression and Characterization of Murine Hevin (SC1), a Member of the SPARC Family of Matricellular Proteins. Journal of Histochemistry and Cytochemistry, 2004, 52, 735-748.	2.5	55
62	SPARC-Null Mice Display Abnormalities in the Dermis Characterized by Decreased Collagen Fibril Diameter and Reduced Tensile Strength. Journal of Investigative Dermatology, 2003, 120, 949-955.	0.7	200
63	Compromised Production of Extracellular Matrix in Mice Lacking Secreted Protein, Acidic and Rich in Cysteine (SPARC) Leads to a Reduced Foreign Body Reaction to Implanted Biomaterials. American Journal of Pathology, 2003, 162, 627-635.	3.8	63
64	Osteonectin-Null Mutation Compromises Osteoblast Formation, Maturation, and Survival. Endocrinology, 2003, 144, 2588-2596.	2.8	146
65	SPARC-null Mice Exhibit Accelerated Cutaneous Wound Closure. Journal of Histochemistry and Cytochemistry, 2002, 50, 1-10.	2.5	153
66	Increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges in SPARC-null mice. Wound Repair and Regeneration, 2001, 9, 522-530.	3.0	56
67	SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. Journal of Clinical Investigation, 2001, 107, 1049-1054.	8.2	560
68	Expression and Purification of Recombinant Human SPARC Produced by Baculovirus. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 345-351.	1.6	34
69	SPARC Regulates the Expression of Collagen Type I and Transforming Growth Factor-β1 in Mesangial Cells. Journal of Biological Chemistry, 1999, 274, 32145-32152.	3.4	166
70	And The Band Played On: Persistent Fibrosis After Unbanding Reveals Sex-Dependent Differences in Rats. American Journal of Physiology - Heart and Circulatory Physiology, 0, , .	3.2	0