David A Ferenbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6798773/publications.pdf

Version: 2024-02-01

23 papers 2,319 citations

471509 17 h-index 713466 21 g-index

26 all docs

26 docs citations

26 times ranked 4022 citing authors

#	Article	IF	CITATIONS
1	Stress-induced senescence of tubular cells. , 2022, , 241-252.		O
2	Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Science Translational Medicine, $2021,13,.$	12.4	83
3	Aging Modulates the Effects of Ischemic Injury Upon Mesenchymal Cells within the Renal Interstitium and Microvasculature. Stem Cells Translational Medicine, 2021, 10, 1232-1248.	3.3	7
4	The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Frontiers in Immunology, 2021, 12, 700790.	4.8	11
5	Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2833-2854.	6.1	113
6	Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Frontiers in Pharmacology, 2020, 11, 755.	3 . 5	26
7	Cellular Senescence in the Kidney. Journal of the American Society of Nephrology: JASN, 2019, 30, 726-736.	6.1	164
8	Complementary Roles for Single-Nucleus and Single-Cell RNA Sequencing in Kidney Disease Research. Journal of the American Society of Nephrology: JASN, 2019, 30, 712-713.	6.1	21
9	Granulocyte macrophage-colony stimulating factor: A key modulator of renal mononuclear phagocyte plasticity. Immunobiology, 2019, 224, 60-74.	1.9	10
10	Tubular Physiology in Acute Kidney Injury: Cell Signalling, Injury and Inflammation. , 2018, , 69-91.		0
11	Local amplifiers of IL-4Rα–mediated macrophage activation promote repair in lung and liver. Science, 2017, 356, 1076-1080.	12.6	163
12	Renal Aging: Causes and Consequences. Journal of the American Society of Nephrology: JASN, 2017, 28, 407-420.	6.1	306
13	Kidney tubules. Current Opinion in Nephrology and Hypertension, 2016, 25, 194-202.	2.0	30
14	Acute kidney injury and chronic kidney disease: From the laboratory to the clinic. Nephrologie Et Therapeutique, 2016, 12, S41-S48.	0.5	96
15	Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nature Reviews Nephrology, 2015, 11, 264-276.	9.6	574
16	Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nature Reviews Nephrology, 2014, 10, 625-643.	9.6	161
17	Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration. Journal of Visualized Experiments, 2014, , .	0.3	67
18	Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney International, 2012, 82, 928-933.	5.2	149

#	Article	IF	CITATIONS
19	The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney International, 2011, 79, 966-976.	5.2	68
20	Hemeoxygenase-1 and Renal Ischaemia-Reperfusion Injury. Nephron Experimental Nephrology, 2010, 115, e33-e37.	2.2	52
21	Tissue-resident Macrophages Protect the Liver From Ischemia Reperfusion Injury via a Heme Oxygenase-1-Dependent Mechanism. Molecular Therapy, 2009, 17, 65-72.	8.2	126
22	Regulatory T cells: a brake on ischemic injury or an active promoter of tissue healing?. Kidney International, 2009, 76, 689-691.	5.2	3
23	Inflammatory Cells in Renal Injury and Repair. Seminars in Nephrology, 2007, 27, 250-259.	1.6	85