Yan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6798447/publications.pdf

Version: 2024-02-01

		1040056	1372567
10	356	9	10
papers	citations	h-index	g-index
10	10	10	396
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose, 2019, 26, 1577-1593.	4.9	60
2	Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Bioresource Technology, 2016, 216, 1098-1101.	9.6	59
3	Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose, 2018, 25, 6479-6494.	4.9	46
4	A bio-mechanical process for cellulose nanofiber production – Towards a greener and energy conservation solution. Carbohydrate Polymers, 2019, 208, 191-199.	10.2	43
5	Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: energy consumption and nanofiber characteristics. Cellulose, 2018, 25, 7065-7078.	4.9	40
6	Highly Transparent, UV-Shielding, and Water-Resistant Lignocellulose Nanopaper from Agro-Industrial Waste for Green Optoelectronics. ACS Sustainable Chemistry and Engineering, 2020, 8, 17508-17519.	6.7	34
7	Tuning of size and properties of cellulose nanofibers isolated from sugarcane bagasse by endoglucanase-assisted mechanical grinding. Industrial Crops and Products, 2020, 146, 112201.	5.2	28
8	Fractionation of Poplar Wood Using a Bifunctional Aromatic Acid under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5364-5376.	6.7	20
9	Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. International Journal of Biological Macromolecules, 2022, 206, 264-276.	7. 5	19
10	Cationic Lignocellulose Nanofibers from Agricultural Waste as High-Performing Adsorbents for the Removal of Dissolved and Colloidal Substances. Polymers, 2022, 14, 910.	4.5	7