
Domagoj Jakobovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6798369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparative Study of Dispatching Rule Representations in Evolutionary Algorithms for the Dynamic Unrelated Machines Environment. IEEE Access, 2022, 10, 22886-22901.	2.6	8
2	Local search based methods for scheduling in the unrelated parallel machines environment. Expert Systems With Applications, 2022, 199, 116909.	4.4	8
3	Selection of dispatching rules evolved by genetic programming in dynamic unrelated machines scheduling based on problem characteristics. Journal of Computational Science, 2022, 61, 101649.	1.5	11
4	On the Difficulty of Evolving Permutation Codes. Lecture Notes in Computer Science, 2022, , 141-156.	1.0	2
5	Using priority rules for resource-constrained project scheduling problem in static environment. Computers and Industrial Engineering, 2022, 169, 108239.	3.4	8
6	Novel ensemble collaboration method for dynamic scheduling problems. , 2022, , .		7
7	Automatic design of dispatching rules for static scheduling conditions. Neural Computing and Applications, 2021, 33, 5043-5068.	3.2	7
8	Genetic programming hyperheuristic parameter configuration using fitness landscape analysis. Applied Intelligence, 2021, 51, 7402-7426.	3.3	1
9	Evolutionary algorithms-assisted construction of cryptographic boolean functions. , 2021, , .		6
10	On the Application of ϵ-Lexicase Selection in the Generation of Dispatching Rules. , 2021, , .		5
11	Designing dispatching rules with genetic programming for the unrelated machines environment with constraints. Expert Systems With Applications, 2021, 172, 114548.	4.4	24
12	Evolutionary computation and machine learning in cryptology. , 2021, , .		2
13	On the genotype compression and expansion for evolutionary algorithms in the continuous domain. , $2021,,$		0
14	Toward more efficient heuristic construction of Boolean functions. Applied Soft Computing Journal, 2021, 107, 107327.	4.1	16
15	Evolutionary algorithms for designing reversible cellular automata. Genetic Programming and Evolvable Machines, 2021, 22, 429-461.	1.5	3
16	Ensembles of priority rules for resource constrained project scheduling problem. Applied Soft Computing Journal, 2021, 110, 107606.	4.1	24
17	Towards Interpretable Dispatching Rules: Application of Expression Simplification Methods. , 2021, , .		3
18	A comparative study of solution representations for the unrelated machines environment. Computers and Operations Research, 2020, 123, 105005.	2.4	9

Домасој Јаковоліс

#	Article	IF	CITATIONS
19	Comparison of schedule generation schemes for designing dispatching rules with genetic programming in the unrelated machines environment. Applied Soft Computing Journal, 2020, 96, 106637.	4.1	21
20	A Search for Additional Structure: The Case of Cryptographic S-boxes. Lecture Notes in Computer Science, 2020, , 343-356.	1.0	1
21	An Evolutionary View on Reversible Shift-Invariant Transformations. Lecture Notes in Computer Science, 2020, , 118-134.	1.0	4
22	Evolutionary computation and machine learning in cryptology. , 2020, , .		4
23	One property to rule them all?. , 2020, , .		4
24	Predictive and generative machine learning models for photonic crystals. Nanophotonics, 2020, 9, 4183-4192.	2.9	58
25	Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations. Lecture Notes in Computer Science, 2020, , 111-124.	1.0	2
26	Cellular automata based S-boxes. Cryptography and Communications, 2019, 11, 41-62.	0.9	43
27	On the design of S-box constructions with genetic programming. , 2019, , .		7
28	Creating dispatching rules by simple ensemble combination. Journal of Heuristics, 2019, 25, 959-1013.	1.1	29
29	C ³ PO. , 2019, , .		4
30	A characterisation of S-box fitness landscapes in cryptography. , 2019, , .		9
31	Improving genetic algorithm performance by population initialisation with dispatching rules. Computers and Industrial Engineering, 2019, 137, 106030.	3.4	45
32	Hyper-bent Boolean Functions and Evolutionary Algorithms. Lecture Notes in Computer Science, 2019, , 262-277.	1.0	11
33	Evolutionary Algorithms for the Design of Quantum Protocols. Lecture Notes in Computer Science, 2019, , 220-236.	1.0	7
34	Comparison of ensemble learning methods for creating ensembles of dispatching rules for the unrelated machines environment. Genetic Programming and Evolvable Machines, 2018, 19, 53-92.	1.5	34
35	Finding short and implementation-friendly addition chains with evolutionary algorithms. Journal of Heuristics, 2018, 24, 457-481.	1.1	5
36	Evolving dispatching rules for optimising many-objective criteria in the unrelated machines environment. Genetic Programming and Evolvable Machines, 2018, 19, 9-51.	1.5	33

#	Article	IF	CITATIONS
37	Classification of Cancer Data: Analyzing Gene Expression Data Using a Fuzzy Decision Tree Algorithm. Profiles in Operations Research, 2018, , 327-347.	0.3	22
38	A Search for Differentially-6 Uniform (n, n-2) Functions. , 2018, , .		3
39	Evolving Bent Quaternary Functions. , 2018, , .		7
40	A survey of dispatching rules for the dynamic unrelated machines environment. Expert Systems With Applications, 2018, 113, 555-569.	4.4	84
41	Evolving priority rules for resource constrained project scheduling problem with genetic programming. Future Generation Computer Systems, 2018, 86, 211-221.	4.9	51
42	Evolutionary Search of Binary Orthogonal Arrays. Lecture Notes in Computer Science, 2018, , 121-133.	1.0	11
43	The Design of (Almost) Disjunct Matrices by Evolutionary Algorithms. Lecture Notes in Computer Science, 2018, , 152-163.	1.0	3
44	Immunological algorithms paradigm for construction of Boolean functions with good cryptographic properties. Engineering Applications of Artificial Intelligence, 2017, 62, 320-330.	4.3	13
45	Evolutionary algorithms for the design of orthogonal latin squares based on cellular automata. , 2017, , .		17
46	Complexity comparison of integer programming and genetic algorithms for resource constrained scheduling problems. , 2017, , .		4
47	On the mutual information as a fitness landscape measure. , 2017, , .		0
48	Evolving S-boxes based on cellular automata with genetic programming. , 2017, , .		18
49	CryptoBench. , 2017, , .		4
50	Side-channel analysis and machine learning: A practical perspective. , 2017, , .		59
51	On the evolution of bent (n, m) functions. , 2017, , .		4
52	Design of S-boxes Defined with Cellular Automata Rules. , 2017, , .		28
53	Evolving Algebraic Constructions for Designing Bent Boolean Functions. , 2016, , .		20
54	Maximal nonlinearity in balanced boolean functions with even number of inputs, revisited. , 2016, , .		10

4

Домасој Јаковочіс

#	Article	IF	CITATIONS
55	Workforce Scheduling in Inbound Customer Call Centres with a Case Study. Lecture Notes in Computer Science, 2016, , 831-846.	1.0	0
56	Evolutionary Algorithms for Finding Short Addition Chains: Going the Distance. Lecture Notes in Computer Science, 2016, , 121-137.	1.0	7
57	Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography. Evolutionary Computation, 2016, 24, 667-694.	2.3	38
58	Adaptive scheduling on unrelated machines with genetic programming. Applied Soft Computing Journal, 2016, 48, 419-430.	4.1	84
59	Comparison of solution representations for scheduling in the unrelated machines environment. , 2016, , .		5
60	Cryptographic Boolean functions: One output, many design criteria. Applied Soft Computing Journal, 2016, 40, 635-653.	4.1	58
61	Extreme Pipelining Towards the Best Area-Performance Trade-Off in Hardware. Lecture Notes in Computer Science, 2016, , 147-166.	1.0	2
62	Evolving Cryptographic Pseudorandom Number Generators. Lecture Notes in Computer Science, 2016, , 613-622.	1.0	10
63	Measuring Performance of Optimization Algorithms in Evolutionary Computation. International Journal of Machine Learning and Computing, 2016, 6, 167-171.	0.8	16
64	Analyzing gene expression data: Fuzzy decision tree algorithm applied to the classification of cancer data. , 2015, , .		18
65	Correlation Immunity of Boolean Functions. , 2015, , .		15
66	Cartesian Genetic Programming Approach for Generating Substitution Boxes of Different Sizes. , 2015, , .		13
67	Evolutionary Methods for the Construction of Cryptographic Boolean Functions. Lecture Notes in Computer Science, 2015, , 192-204.	1.0	21
68	Fault Injection with a New Flavor: Memetic Algorithms Make a Difference. Lecture Notes in Computer Science, 2015, , 159-173.	1.0	14
69	Evolutionary Approach for Finding Correlation Immune Boolean Functions of Order t with Minimal Hamming Weight. Lecture Notes in Computer Science, 2015, , 71-82.	1.0	16
70	From fitness landscape to crossover operator choice. , 2014, , .		6
71	Optimality and beyond: The case of 4×4 S-boxes. , 2014, , .		25

72 Evolving genetic algorithms for fault injection attacks. , 2014, , .

16

Домадој Јаковоліс

#	Article	IF	CITATIONS
73	Asynchronous and implicitly parallel evolutionary computation models. Soft Computing, 2014, 18, 1225-1236.	2.1	9
74	On using genetic algorithms for intrinsic side-channel resistance. , 2014, , .		32
75	Glitch It If You Can: Parameter Search Strategies for Successful Fault Injection. Lecture Notes in Computer Science, 2014, , 236-252.	1.0	14
76	Evolving DPA-Resistant Boolean Functions. Lecture Notes in Computer Science, 2014, , 812-821.	1.0	14
77	Combining Evolutionary Computation and Algebraic Constructions to Find Cryptography-Relevant Boolean Functions. Lecture Notes in Computer Science, 2014, , 822-831.	1.0	19
78	S-box Pipelining Using Genetic Algorithms for High-Throughput AES Implementations: How Fast Can We Go?. Lecture Notes in Computer Science, 2014, , 322-337.	1.0	8
79	Confused by Confusion: Systematic Evaluation of DPA Resistance of Various S-boxes. Lecture Notes in Computer Science, 2014, , 374-390.	1.0	33
80	Glitch It If You Can: Parameter Search Strategies for Successful Fault Injection. Lecture Notes in Computer Science, 2014, , 236-252.	1.0	7
81	S-box, SET, Match: A Toolbox for S-box Analysis. Lecture Notes in Computer Science, 2014, , 140-149.	1.0	29
82	Evolving cryptographically sound boolean functions. , 2013, , .		28
83	Inferring presence status on smartphones: The big data perspective. , 2013, , .		0
84	On the recombination operator in the real-coded genetic algorithms. , 2013, , .		21
85	Influence of the crossover operator in the performance of the hybrid Taguchi GA. , 2012, , .		1
86	Evolving priority scheduling heuristics with genetic programming. Applied Soft Computing Journal, 2012, 12, 2781-2789.	4.1	65
87	Evaluation of Crossover Operator Performance in Genetic Algorithms with Binary Representation. Lecture Notes in Computer Science, 2012, , 223-230.	1.0	22
88	Intelligent problem solving in process control of an event filter cluster for a particle physics experiment. Expert Systems With Applications, 2011, 38, 13568-13568.	4.4	0
89	University Course Timetabling Using ACO: A Case Study on Laboratory Exercises. Lecture Notes in Computer Science, 2010, , 100-110.	1.0	7
90	Exam timetabling using genetic algorithm. , 2009, , .		7

6

Домасој Јаковоліс

#	Article	IF	CITATIONS
91	University Course Timetabling with Genetic Algorithm: A Laboratory Excercises Case Study. Lecture Notes in Computer Science, 2009, , 240-251.	1.0	4
92	Evolutionary algorithms for the resource constrained scheduling problem. , 2008, , .		10
93	Genetic Programming Heuristics for Multiple Machine Scheduling. , 2007, , 321-330.		45
94	Dynamic Scheduling with Genetic Programming. Lecture Notes in Computer Science, 2006, , 73-84.	1.0	76
95	Genetic Algorithms in Real-Time Imprecise Computing. Journal of Computing and Information Technology, 2000, 8, 249.	0.2	5
96	Benu: Operating System Increments for Embedded Systems Engineer's Education. , 0, , .		0