
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6797505/publications.pdf Version: 2024-02-01

DED CHNDEDSEN

#	Article	IF	CITATIONS
1	Unexpected high retention of ¹⁵ Nâ€labeled nitrogen in a tropical legume forest under longâ€term nitrogen enrichment. Global Change Biology, 2022, 28, 1529-1543.	4.2	10
2	Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nature Communications, 2022, 13, 880.	5.8	55
3	Design and performance of an ecosystemâ€scale forest soil warming experiment with infrared heater arrays. Methods in Ecology and Evolution, 2022, 13, 2065-2077.	2.2	6
4	Dynamics and multiâ€annual fate of atmospherically deposited nitrogen in montane tropical forests. Global Change Biology, 2021, 27, 2076-2087.	4.2	16
5	Retention and partitioning of 15N-labeled deposited N in a tropical plantation forest. Biogeochemistry, 2021, 152, 237-251.	1.7	4
6	Old-growth forest carbon sinks overestimated. Nature, 2021, 591, E21-E23.	13.7	65
7	Negative effects of long-term phosphorus additions on understory plants in a primary tropical forest. Science of the Total Environment, 2021, 798, 149306.	3.9	10
8	Mycorrhizal association of common European tree species shapes biomass and metabolic activity of bacterial and fungal communities in soil. Soil Biology and Biochemistry, 2020, 149, 107933.	4.2	31
9	The long-term fate of deposited nitrogen in temperate forest soils. Biogeochemistry, 2020, 150, 1-15.	1.7	8
10	Vertical Redistribution of Soil Organic Carbon Pools After Twenty Years of Nitrogen Addition in Two Temperate Coniferous Forests. Ecosystems, 2019, 22, 379-400.	1.6	33
11	Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data–model comparison. Biogeosciences, 2019, 16, 2771-2793.	1.3	10
12	Fate of atmospherically deposited <scp>NH</scp> ₄ ⁺ and <scp>NO</scp> ₃ ^{â^*} in two temperate forests in China: temporal pattern and redistribution. Ecological Applications, 2019, 29, e01920.	1.8	17
13	Resistant Soil Microbial Communities Show Signs of Increasing Phosphorus Limitation in Two Temperate Forests After Long-Term Nitrogen Addition. Frontiers in Forests and Global Change, 2019, 2,	1.0	21
14	Species Differences in Nitrogen Acquisition in Humid Subtropical Forest Inferred From 15N Natural Abundance and Its Response to Tracer Addition. Forests, 2019, 10, 991.	0.9	4
15	Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytologist, 2019, 223, 33-39.	3.5	147
16	Fates of atmospheric deposited nitrogen in an Asian tropical primary forest. Forest Ecology and Management, 2018, 411, 213-222.	1.4	29
17	Altered microbial communities and nitrogen availability in temperate forest edges. Soil Biology and Biochemistry, 2018, 116, 179-188.	4.2	18
18	Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment, 2018, 610-611, 555-562.	3.9	71

#	Article	IF	CITATIONS
19	Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry, 2018, 141, 167-181.	1.7	48
20	Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET. Agricultural and Forest Meteorology, 2017, 239, 118-133.	1.9	22
21	Edge effects in temperate forests subjected to high nitrogen deposition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7032.	3.3	6
22	Nitrogen input ¹⁵ N signatures are reflected in plant ¹⁵ N natural abundances in subtropical forests in China. Biogeosciences, 2017, 14, 2359-2370.	1.3	18
23	High retention of ¹⁵ Nâ€labeled nitrogen deposition in a nitrogen saturated oldâ€growth tropical forest. Global Change Biology, 2016, 22, 3608-3620.	4.2	53
24	Strong gradients in nitrogen and carbon stocks at temperate forest edges. Forest Ecology and Management, 2016, 376, 45-58.	1.4	56
25	Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports, 2015, 5, 14378.	1.6	60
26	Exceedance of critical loads and of critical limits impacts tree nutrition across Europe. Annals of Forest Science, 2015, 72, 929-939.	0.8	39
27	Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. Forest Ecology and Management, 2015, 351, 9-19.	1.4	97
28	Afforestation effects on <scp>SOC</scp> in former cropland: oak and spruce chronosequences resampled after 13Âyears. Global Change Biology, 2014, 20, 2938-2952.	4.2	50
29	Soil carbon stock change following afforestation in Northern Europe: a metaâ€analysis. Global Change Biology, 2014, 20, 2393-2405.	4.2	172
30	Conversion of cropland to forest increases soil CH4 oxidation and abundance of CH4 oxidizing bacteria with stand age. Applied Soil Ecology, 2014, 79, 49-58.	2.1	27
31	The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility. Plant and Soil, 2013, 368, 375-392.	1.8	30
32	Water Balance in Afforestation Chronosequences of Common Oak and Norway Spruce on Former Arable Soils in Denmark as Evaluated Using the DAISY Model. Procedia Environmental Sciences, 2013, 19, 217-223.	1.3	4
33	Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens. Forest Ecology and Management, 2013, 309, 47-57.	1.4	64
34	Do tree species influence soil carbon stocks in temperate and boreal forests?. Forest Ecology and Management, 2013, 309, 4-18.	1.4	296
35	Changes in soil water balance following afforestation of former arable soils in Denmark as evaluated using the DAISY model. Journal of Hydrology, 2013, 484, 128-139.	2.3	16
36	Interactive Effects of Nitrogen and Phosphorus on Soil Microbial Communities in a Tropical Forest. PLoS ONE, 2013, 8, e61188.	1.1	120

#	Article	IF	CITATIONS
37	How Forest Management affects Ecosystem Services, including Timber Production and Economic Return: Synergies and Trade-Offs. Ecology and Society, 2012, 17, .	1.0	154
38	Influence of hydromorphic soil conditions on greenhouse gas emissions and soil carbon stocks in a Danish temperate forest. Forest Ecology and Management, 2012, 284, 185-195.	1.4	29
39	Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ€analysis of ¹⁵ N tracer field studies. Ecology, 2012, 93, 1816-1829.	1.5	192
40	The response of methane and nitrous oxide fluxes to forest change in Europe. Biogeosciences, 2012, 9, 3999-4012.	1.3	74
41	Corrigendum to "Stand age and tree species affect N ₂ O and CH ₄ exchange from afforested soils" published in Biogeosciences, 8, 2535–2546, 2011. Biogeosciences, 2012, 9, 269-270.	1.3	0
42	Changes in microbial activities and biomasses over a forest floor gradient in C-to-N ratio. Plant and Soil, 2012, 355, 75-86.	1.8	37
43	Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a standâ€scale nitrogen deposition gradient. New Phytologist, 2012, 194, 278-286.	3.5	149
44	Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology and Biochemistry, 2012, 44, 31-38.	4.2	379
45	Nitrous oxide and methane exchange in two small temperate forest catchments—effects of hydrological gradients and implications for global warming potentials of forest soils. Biogeochemistry, 2012, 107, 437-454.	1.7	42
46	Nitrogen processes in terrestrial ecosystems. , 2011, , 99-125.		77
47	Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. Journal of Forest Research, 2011, 16, 341-350.	0.7	81
48	Stand age and tree species affect N ₂ O and CH ₄ exchange from afforested soils. Biogeosciences, 2011, 8, 2535-2546.	1.3	35
49	Role of six European tree species and landâ€use legacy for nitrogen and water budgets in forests. Global Change Biology, 2010, 16, 2224-2240.	4.2	32
50	Environmental Services Provided from Riparian Forests in the Nordic Countries. Ambio, 2010, 39, 555-566.	2.8	81
51	Large Loss of Dissolved Organic Nitrogen from Nitrogen-Saturated Forests in Subtropical China. Ecosystems, 2009, 12, 33-45.	1.6	77
52	Soil–atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant and Soil, 2009, 319, 37-48.	1.8	61
53	Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. Forest Ecology and Management, 2009, 257, 332-342.	1.4	90
54	Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 2009, 257, 2133-2144.	1.4	129

4

#	Article	IF	CITATIONS
55	The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 2009, 258, 1814-1823.	1.4	309
56	Do indicators of nitrogen retention and leaching differ between coniferous and broadleaved forests in Denmark?. Forest Ecology and Management, 2009, 258, 1137-1146.	1.4	75
57	Sequestration of carbon in the humus layer of Swedish forests — direct measurements. Canadian Journal of Forest Research, 2009, 39, 962-975.	0.8	46
58	Response of Nitrogen Leaching to Nitrogen Deposition in Disturbed and Mature Forests of Southern China. Pedosphere, 2009, 19, 111-120.	2.1	29
59	How much carbon is sequestrated in forest soils? Is it enhanced by nitrogen deposition and for how long?. IOP Conference Series: Earth and Environmental Science, 2009, 6, 082013.	0.2	1
60	Experimental design of multifactor climate change experiments with elevated CO ₂ , warming and drought: the CLIMAITE project. Functional Ecology, 2008, 22, 185-195.	1.7	75
61	Seedling growth response of two tropical tree species to nitrogen deposition in southern China. European Journal of Forest Research, 2008, 127, 275-283.	1.1	66
62	Ecologically implausible carbon response?. Nature, 2008, 451, E1-E3.	13.7	141
63	Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 2008, 14, 403-412.	4.2	382
64	Carbon and nitrogen cycles in European ecosystems respond differently to global warmingâ~†. Science of the Total Environment, 2008, 407, 692-697.	3.9	117
65	Methane uptake responses to nitrogen deposition in three tropical forests in southern China. Journal of Geophysical Research, 2008, 113, .	3.3	61
66	Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 2008, 255, 35-48.	1.4	438
67	Comparing biomass and nutrient removals of stems and fresh and predried whole trees in thinnings in two Norway spruce experiments. Canadian Journal of Forest Research, 2008, 38, 2660-2673.	0.8	15
68	Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences, 2008, 5, 339-352.	1.3	159
69	Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. Forest Ecology and Management, 2007, 238, 167-174.	1.4	81
70	Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Global Change Biology, 2007, 13, 1250-1264.	4.2	45
71	Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China. Journal of Environmental Sciences, 2007, 19, 603-609.	3.2	25
72	Guidelines for Planning Afforestation of Former Arable Land. , 2007, , 249-291.		2

72 Guidelines for Planning Afforestation of Former Arable Land. , 2007, , 249-291.

5

#	Article	IF	CITATIONS
73	Carbon sequestration rates in Swedish forest soils – a comparison of three approaches. Silva Fennica, 2007, 41, .	0.5	11
74	The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology, 2006, 12, 1151-1173.	4.2	250
75	Regional Assessment of N Saturation using Foliar and Root \$\$varvec {delta}^{f 15}{f N}\$\$. Biogeochemistry, 2006, 80, 143-171.	1.7	172
76	Leaching of nitrate from temperate forests – effects of air pollution and forest management. Environmental Reviews, 2006, 14, 1-57.	2.1	335
77	Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China. Journal of Environmental Sciences, 2006, 18, 752-9.	3.2	29
78	Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 2005, 11, 1142-1147.	4.2	251
79	Water quality improvements from afforestation in an agricultural catchment in Denmark illustrated with the INCA model. Hydrology and Earth System Sciences, 2004, 8, 764-777.	1.9	21
80	Forest Ecosystem Responses to Atmospheric Pollution: Linking Comparative With Experimental Studies. Water, Air and Soil Pollution, 2004, 4, 207-220.	0.8	10
81	Throughfall Nitrogen Deposition Has Different Impacts on Soil Solution Nitrate Concentration in European Coniferous and Deciduous Forests. Ecosystems, 2004, 7, 180.	1.6	117
82	Novel Approaches to Study Climate Change Effects on Terrestrial Ecosystems in the Field: Drought and Passive Nighttime Warming. Ecosystems, 2004, 7, 583.	1.6	232
83	Soil Solution Chemistry and Element Fluxes in Three European Heathlands and Their Responses to Warming and Drought. Ecosystems, 2004, 7, 638.	1.6	79
84	Forest Ecosystem Responses to Atmospheric Pollution: Linking Comparative with Experimental Studies. , 2004, , 207-220.		0
85	Title is missing!. Plant and Soil, 2003, 249, 319-330.	1.8	115
86	Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 2002, 169, 137-147.	1.4	387
87	Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 2002, 8, 1028-1033.	4.2	272
88	Nitrogen Cycling in a Norway Spruce Plantation in Denmark — A SOILN Model Application Including Organic N Uptake. Scientific World Journal, The, 2001, 1, 394-406.	0.8	6
89	Nitrogen and Carbon Interactions of Forest Soil Water. Ecological Studies, 2000, , 332-340.	0.4	3
90	Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 1999, 398, 145-148.	13.7	676

#	Article	IF	CITATIONS
91	Nitrogen deposition and carbon sequestration. Nature, 1999, 400, 630-630.	13.7	2
92	Nitrate concentrations in soil solutions below Danish forests. Forest Ecology and Management, 1999, 114, 71-82.	1.4	48
93	Synthesis of Nitrogen Pools and Fluxes from European Forest Ecosystems. Water, Air, and Soil Pollution, 1998, 105, 143-154.	1.1	147
94	Predicting the Effects of Atmospheric Nitrogen Deposition in Conifer Stands: Evidence from the NITREX Ecosystem-Scale Experiments. Ecosystems, 1998, 1, 352-360.	1.6	153
95	Natural abundance of 15N in forests across a nitrogen deposition gradient. Forest Ecology and Management, 1998, 101, 9-18.	1.4	164
96	The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. Forest Ecology and Management, 1998, 101, 19-27.	1.4	141
97	Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management, 1998, 101, 37-55.	1.4	536
98	Input-output budgets at the NITREX sites. Forest Ecology and Management, 1998, 101, 57-64.	1.4	90
99	Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecology and Management, 1998, 101, 65-79.	1.4	136
100	Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark, examined by moderate NH4NO3 addition. Forest Ecology and Management, 1998, 101, 251-268.	1.4	103
101	Experimental manipulation of forest ecosystems: lessons from large roof experiments. Forest Ecology and Management, 1998, 101, 339-352.	1.4	34
102	Nitrate leaching in forest ecosystems is related to forest floor CN ratios. Environmental Pollution, 1998, 102, 403-407.	3.7	378
103	Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: a summary of results. Environmental Pollution, 1998, 102, 433-437.	3.7	64
104	Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. , 1998, , 403-407.		3
105	Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: a summary of results. , 1998, , 433-437.		3
106	Synthesis of Nitrogen Pools and Fluxes from European Forest Ecosystems. , 1998, , 143-154.		2
107	Nitrate leaching in coniferous forest ecosystems: The European Field-Scale Manipulation Experiments NITREX (Nitrogen Saturation Experiments) and EXMAN (Experimental Manipulation of Forest) Tj ETQq1 1 0.7843	81 4. gBT /	Ovedock 10 T
108	Experimental manipulations of water and nutrient input to a Norway spruce plantation at Klosterhede, Denmark. Plant and Soil, 1995, 168-169, 601-611.	1.8	29

#	Article	IF	CITATIONS
109	Experimental manipulation of water and nutrient input to a Norway spruce plantation at Klosterhede, Denmark. Plant and Soil, 1995, 168-169, 613-622.	1.8	33
110	Experimental manipulations of water and nutrient input to a Norway spruce plantation at Klosterhede, Denmark. Plant and Soil, 1995, 168-169, 623-632.	1.8	21
111	Nitrogen deposition and leaching in European forests ? Preliminary results from a data compilation. Water, Air, and Soil Pollution, 1995, 85, 1179-1184.	1.1	78
112	Nitrex: The timing of response of coniferous forest ecosystems to experimentally-changed nitrogen deposition. Water, Air, and Soil Pollution, 1995, 85, 1623-1628.	1.1	27
113	Nitrogen mobility in a nitrogen limited forest at Klosterhede, Denmark, examined by NH4NO3 addition. Forest Ecology and Management, 1995, 71, 75-88.	1.4	83
114	NITREX: responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. Forest Ecology and Management, 1995, 71, 163-169.	1.4	76
115	Experimental manipulations of water and nutrient input to a Norway spruce plantation at Klosterhede, Denmark. , 1995, , 601-611.		4
116	Experimental manipulation of water and nutrient input to a Norway spruce plantation at Klosterhede, Denmark. , 1995, , 613-622.		0
117	Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmospheric Environment, 1994, 28, 3195-3205.	1.9	64
118	Spatial variability of throughfall fluxes in a spruce forest. Environmental Pollution, 1993, 81, 257-267.	3.7	124
119	A new method for estimation of dry deposition of particles based on throughfall measurements in a forest edge. Atmospheric Environment Part A General Topics, 1992, 26, 1553-1559.	1.3	49
120	Long-term field comparison of ceramic and poly(tetrafluoroethene) porous cup soil water samplers. Environmental Science & Technology, 1992, 26, 2005-2011.	4.6	29
121	Nitrogen deposition and the forest nitrogen cycle: role of denitrification. Forest Ecology and Management, 1991, 44, 15-28.	1.4	84
122	Nitrification in Forest Soils: Effects from Nitrogen Deposition on Soil Acidification and Aluminum Release. Reviews of Environmental Contamination and Toxicology, 1990, , 1-45.	0.7	85
123	Atmospheric deposition to the edge of a spruce forest in Denmark. Environmental Pollution, 1989, 60, 257-271.	3.7	97
124	Geothermal ecosystems as natural climate change experiments: The ForHot research site in Iceland as a case study. Icelandic Agricultural Sciences, 0, 29, 53-71.	0.0	55