Rosu Liliana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6797255/publications.pdf

Version: 2024-02-01

623734 713466 21 896 14 21 h-index citations g-index papers 21 21 21 1124 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Sustainable wood coatings made of epoxidized vegetable oils for ultraviolet protection. Environmental Chemistry Letters, 2021, 19, 307-328.	16.2	23
2	Bio-based coatings from epoxy resins crosslinked with a rosin acid derivative for wood thermal and anti–fungal protection. Progress in Organic Coatings, 2021, 151, 106008.	3.9	15
3	Effect of Thermal Aging on the Physico-Chemical and Optical Properties of Poly(ester urethane) Elastomers Designed for Passive Damping (Pads) of the Railway. Polymers, 2021, 13, 192.	4.5	5
4	Photochemical Aging of Eco-Friendly Wood Coatings Derived from Vegetable Oils. ACS Applied Polymer Materials, 2021, 3, 6303-6314.	4.4	7
5	Epoxy Coatings Based on Modified Vegetable Oils for Wood Surface Protection against Fungal Degradation. ACS Applied Materials & Interfaces, 2020, 12, 14443-14458.	8.0	35
6	Natural bio-based products for wood coating and protection against degradation: A Review. BioResources, 2019, 14, 4873-4901.	1.0	58
7	Thermal behaviour and fungi resistance of composites based on wood and natural and synthetic epoxy resins cured with maleopimaric acid. Polymer Degradation and Stability, 2019, 160, 148-161.	5 . 8	27
8	Enhancing the Thermal and Fungal Resistance of Wood Treated with Natural and Synthetic Derived Epoxy Resins. ACS Sustainable Chemistry and Engineering, 2018, 6, 5470-5478.	6.7	30
9	Ecofriendly wet–white leather vs. conventional tanned wet–blue leather. A photochemical approach. Journal of Cleaner Production, 2018, 177, 708-720.	9.3	34
10	Influence of different tanning agents on bovine leather thermal degradation. Journal of Thermal Analysis and Calorimetry, 2018, 134, 583-594.	3.6	15
11	A study on coating properties of an epoxy system hardened with maleinized castor oil. Progress in Organic Coatings, 2016, 99, 480-489.	3.9	9
12	Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action. Journal of Cleaner Production, 2016, 112, 1175-1183.	9.3	32
13	Thermal Degradation of Thermosetting Blends. Engineering Materials, 2015, , 17-49.	0.6	2
14	The thermal stability of some semi-interpenetrated polymer networks based on epoxy resin and aromatic polyurethane. Journal of Analytical and Applied Pyrolysis, 2013, 100, 103-110.	5.5	27
15	Physico-chemical properties investigation of softwood surface after treatment with organic anhydride. Open Chemistry, 2013, 11, 2098-2106.	1.9	9
16	Effect of UV radiation on some semi-interpenetrating polymer networks based on polyurethane and epoxy resin. Polymer Degradation and Stability, 2012, 97, 1261-1269.	5.8	44
17	Structural Changes in Wood under Artificial UV Light Irradiation Determined by FTIR Spectroscopy and Color Measurements – A Brief Review. BioResources, 2012, 8, .	1.0	84
18	Investigations on the thermal stability of a MDI based polyurethane elastomer. Journal of Analytical and Applied Pyrolysis, 2010, 89, 152-158.	5.5	70

Rosu Liliana

#	Article	IF	CITATIONS
19	FTIR and color change of the modified wood as a result of artificial light irradiation. Journal of Photochemistry and Photobiology B: Biology, 2010, 99, 144-149.	3 . 8	144
20	The influence of polychromic light on the surface of MDI based polyurethane elastomer. Applied Surface Science, 2009, 255, 9453-9457.	6.1	12
21	IR-change and yellowing of polyurethane as a result of UV irradiation. Polymer Degradation and Stability, 2009, 94, 591-596.	5. 8	214