Jin-Hao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6797090/publications.pdf

Version: 2024-02-01

		567281	454955
36	946	15	30
papers	citations	h-index	g-index
26	2.6	26	0.67
36	36	36	867
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	H ₂ O ₂ â€Promoted Alkoxyalkylation of Terminal Alkynes Employing Two Strategies with Transitionâ€Metalâ€Free Conditions. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	5
2	pH-Responsive On-Demand Alkaloids Release from Core–Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease. ACS Nano, 2022, 16, 2762-2773.	14.6	72
3	Acetalated dextran microparticles for the smart delivery of pyraclostrobin to control Sclerotinia diseases. Carbohydrate Polymers, 2022, 291, 119576.	10.2	15
4	A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control. Journal of Hazardous Materials, 2021, 403, 123654.	12.4	83
5	A sensitive immunoassay based on fluorescence resonance energy transfer from up-converting nanoparticles and graphene oxide for one-step detection of imidacloprid. Food Chemistry, 2021, 335, 127609.	8.2	41
6	3D, eco-friendly metal-organic frameworks@carbon nanotube aerogels composite materials for removal of pesticides in water. Journal of Hazardous Materials, 2021, 401, 123718.	12.4	116
7	A Light-Triggered pH-Responsive Metal–Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape. ACS Nano, 2021, 15, 6987-6997.	14.6	126
8	Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally-safe fungicide delivery. Chemical Engineering Journal, 2021, 418, 129274.	12.7	60
9	A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of Phytophthora sojae in soybean (Glycine max L. Merr.). Journal of Cleaner Production, 2020, 245, 118943.	9.3	29
10	High foliar affinity cellulose for the preparation of efficient and safe fipronil formulation. Journal of Hazardous Materials, 2020, 384, 121408.	12.4	16
11	Rapid and efficient removal of acetochlor from environmental water using Cr-MIL-101 sorbent modified with 3, 5-Bis(trifluoromethyl)phenyl isocyanate. Science of the Total Environment, 2020, 710, 135512.	8.0	11
12	Syntheses and Insecticidal Activity of Spirocyclic Tetronic Acid Derivatives Containing Oxime Ether Moiety. Chemical Research in Chinese Universities, 2020, 36, 810-815.	2.6	4
13	Combined inhibition of JAK1/2 and DNMT1 by newly identified small-molecule compounds synergistically suppresses the survival and proliferation of cervical cancer cells. Cell Death and Disease, 2020, 11, 724.	6. 3	26
14	An amino-modified metal-organic framework (type UiO-66-NH2) loaded with cadmium(II) and lead(II) ions for simultaneous electrochemical immunosensing of triazophos and thiacloprid. Mikrochimica Acta, 2019, 186, 101.	5 . O	36
15	Pyridine Alkaloids in the Venom of Imported Fire Ants. Journal of Agricultural and Food Chemistry, 2019, 67, 11388-11395.	5.2	17
16	Innovative Approach to Nano Thiazole-Zn with Promising Physicochemical and Bioactive Properties by Nanoreactor Construction. Journal of Agricultural and Food Chemistry, 2019, 67, 11577-11583.	5.2	11
17	Enantioselective Reduction of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones and Aryl Ketones by Perakine Reductase. Organic Letters, 2019, 21, 4411-4414.	4.6	16
18	Visible-light-mediated guest trapping in a photosensitizing porous coordination network: metal-free C–C bond-forming modification of metal–organic frameworks for aqueous-phase herbicide adsorption. Chemical Communications, 2019, 55, 5383-5386.	4.1	20

#	Article	IF	CITATIONS
19	Compartmentalization of Incompatible Polymers within Metal–Organic Frameworks towards Homogenization of Heterogeneous Hybrid Catalysts for Tandem Reactions. Chemistry - A European Journal, 2018, 24, 9903-9909.	3.3	16
20	Degradation and metabolic profiling for benzene kresoxim-methyl using carbon-14 tracing. Science of the Total Environment, 2018, 637-638, 1221-1229.	8.0	8
21	Design, Synthesis, and Fungicidal Evaluation of Novel Pyrazole-furan and Pyrazole-pyrrole Carboxamide as Succinate Dehydrogenase Inhibitors. Journal of Agricultural and Food Chemistry, 2017, 65, 5397-5403.	5.2	53
22	Discovery of Novel Succinate Dehydrogenase Inhibitors by the Integration of in Silico Library Design and Pharmacophore Mapping. Journal of Agricultural and Food Chemistry, 2017, 65, 3204-3211.	5.2	43
23	A Copper-Catalyzed Tandem Cyclization Reaction of Aminoalkynes with Alkynes for the Construction of Tetrahydropyrrolo[1,2-a]quinolines Scaffold. Scientific Reports, 2017, 7, 16640.	3.3	11
24	Crystal structure of ethyl 2-(2-(4-chlorophenyl)-3-methylbutanamido)thiazol-4-yl)acetate, C18H21ClN2O3S. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 9-11.	0.3	0
25	Support vector machine (SVM) classification model based rational design of novel tetronic acid derivatives as potent insecticidal and acaricidal agents. RSC Advances, 2015, 5, 49195-49203.	3.6	12
26	Synthesis, antifungal activity, and QSAR study of novel trichodermin derivatives. Journal of Asian Natural Products Research, 2015, 17, 47-55.	1.4	10
27	Synthesis and biological evaluation of novel trichodermin derivatives as antifungal agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3565-3568.	2.2	2
28	Structure, bioactivity and implications for environmental remediation of complexes comprising the fungicide hexaconazole bound to copper. Pest Management Science, 2014, 70, 228-233.	3.4	6
29	Synthesis and Antifungal Activities of Trichodermin Derivatives as Fungicides on Rice. Chemistry and Biodiversity, 2013, 10, 600-611.	2.1	17
30	Metabolism-based synthesis, biological evaluation and structure-activity relationship analysis of spirotetramat analogues as potential lipid biosynthesis inhibitors. Pest Management Science, 2013, 69, 1121-1130.	3.4	15
31	3-(2,5-Dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl 3-(2-bromo-4-fluorophenyl)acrylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1064-o1065.	0.2	0
32	Design, Synthesis, and Analysis of the Quantitative Structure–Activity Relationships of 4-Phenyl-acyl-substituted 3-(2,5-Dimethylphenyl)-4-hydroxy-1-azaspiro[4.5]dec-3-ene-2,8-dione Derivatives. Journal of Agricultural and Food Chemistry, 2012, 60, 4779-4787.	5.2	11
33	Synthesis and bioactivity evaluation of novel spiromesifen derivatives. Pest Management Science, 2012, 68, 10-15.	3.4	8
34	Design, Synthesis, and Biological Activities of Milbemycin Analogues. Journal of Agricultural and Food Chemistry, 2011, 59, 4836-4850.	5.2	26
35	2-(4-Chlorophenyl)-3-methyl-N-(5-methylthiazol-2-yl)butanamide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o184-o184.	0.2	1
36	2-(4-Chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4840-o4841.	0.2	3