Robert Vassen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6797021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zirconates as New Materials for Thermal Barrier Coatings. Journal of the American Ceramic Society, 2000, 83, 2023-2028.	1.9	1,068
2	Overview on advanced thermal barrier coatings. Surface and Coatings Technology, 2010, 205, 938-942.	2.2	933
3	Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rareâ€Earthâ€Element Zirconate System. Journal of the American Ceramic Society, 2003, 86, 1338-1344.	1.9	409
4	Recent Developments in the Field of Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2009, 18, 181-186.	1.6	284
5	Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. Journal of Thermal Spray Technology, 2017, 26, 992-1010.	1.6	263
6	New Thermal Barrier Coatings Based on Pyrochlore/YSZ Doubleâ€Layer Systems. International Journal of Applied Ceramic Technology, 2004, 1, 351-361.	1.1	245
7	The 2016 Thermal Spray Roadmap. Journal of Thermal Spray Technology, 2016, 25, 1376-1440.	1.6	243
8	Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surface and Coatings Technology, 2004, 186, 353-363.	2.2	240
9	Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 303, 100-109.	2.6	194
10	Perovskiteâ€Type Strontium Zirconate as a New Material for Thermal Barrier Coatings. Journal of the American Ceramic Society, 2008, 91, 2630-2635.	1.9	170
11	New material concepts for the next generation of plasma-sprayed thermal barrier coatings. Journal of Thermal Spray Technology, 2004, 13, 76-83.	1.6	167
12	Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior. Surface and Coatings Technology, 2011, 206, 16-23.	2.2	159
13	Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes. Journal of Thermal Spray Technology, 2011, 20, 677-695.	1.6	159
14	Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings. Journal of Thermal Spray Technology, 2008, 17, 115-123.	1.6	158
15	Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings. Surface and Coatings Technology, 2005, 192, 48-56.	2.2	151
16	Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness. Surface and Coatings Technology, 2002, 161, 26-35.	2.2	143
17	Molten salt shielded synthesis of oxidation prone materials in air. Nature Materials, 2019, 18, 465-470.	13.3	134
18	Gadolinium Zirconate/ <scp>YSZ</scp> Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior. Journal of the American Ceramic Society, 2014, 97, 4045-4051.	1.9	133

#	Article	IF	CITATIONS
19	Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. Journal of the European Ceramic Society, 2008, 28, 3071-3081.	2.8	127
20	Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results. Journal of Thermal Spray Technology, 2009, 18, 835-845.	1.6	114
21	Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2004, 13, 432-442.	1.6	107
22	Porosity–Property Relationships of Plasmaâ€Sprayed Gd ₂ Zr ₂ O ₇ / <scp>YSZ</scp> Thermal Barrier Coatings. Journal of the American Ceramic Society, 2015, 98, 2647-2654.	1.9	105
23	Suspension Plasma Spraying: Process Characteristics and Applications. Journal of Thermal Spray Technology, 2010, 19, 219-225.	1.6	104
24	Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions. Journal of Thermal Spray Technology, 2013, 22, 646-658.	1.6	103
25	Component interactions after long-term operation of an SOFC stack with LSM cathode. Journal of Power Sources, 2012, 201, 196-203.	4.0	101
26	Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS). Surface and Coatings Technology, 2007, 202, 499-508.	2.2	97
27	Process development and coating characteristics of plasma spray-PVD. Surface and Coatings Technology, 2013, 220, 219-224.	2.2	97
28	Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study. Journal of Thermal Spray Technology, 2017, 26, 1011-1024.	1.6	97
29	Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour. Surface and Coatings Technology, 2001, 141, 135-140.	2.2	95
30	Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings. Wear, 2011, 271, 2909-2918.	1.5	91
31	Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF). Journal of Thermal Spray Technology, 2011, 20, 116-120.	1.6	91
32	Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surface and Coatings Technology, 2017, 318, 208-216.	2.2	88
33	Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells. Journal of Materials Science, 2001, 36, 147-151.	1.7	83
34	Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surface and Coatings Technology, 2017, 318, 157-169.	2.2	83
35	A life time model for ceramic thermal barrier coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 358, 255-265.	2.6	82
36	Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems. Journal of Thermal Spray Technology, 2007, 16, 414-424.	1.6	82

#	Article	IF	CITATIONS
37	Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD. Journal of Thermal Spray Technology, 2014, 23, 182-189.	1.6	81
38	Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications. Journal of Thermal Spray Technology, 2011, 20, 391-406.	1.6	80
39	Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying. Journal of Thermal Spray Technology, 2013, 22, 83-89.	1.6	80
40	Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying. Journal of Thermal Spray Technology, 2012, 21, 416-424.	1.6	78
41	Novel opportunities for thermal spray by PS-PVD. Surface and Coatings Technology, 2015, 268, 52-57.	2.2	78
42	Advanced thermal spray technologies for applications in energy systems. Surface and Coatings Technology, 2008, 202, 4432-4437.	2.2	77
43	Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF). Journal of Thermal Spray Technology, 2012, 21, 435-440.	1.6	77
44	La2(Zr0.7Ce0.3)2O7—A new oxide ceramic material with high sintering-resistance. Materials Letters, 2008, 62, 2667-2669.	1.3	76
45	Application of Plasma-Sprayed Complex Perovskites as Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2009, 18, 187-193.	1.6	74
46	Thermal Cycling Setup for Testing Thermal Barrier Coatings. Advanced Engineering Materials, 2003, 5, 429-432.	1.6	73
47	Development of YSZ Thermal Barrier Coatings Using Axial Suspension Plasma Spraying. Coatings, 2017, 7, 120.	1.2	73
48	Hot Corrosion of Lanthanum Zirconate and Partially Stabilized Zirconia Thermal Barrier Coatings. Journal of Engineering for Gas Turbines and Power, 2006, 128, 144-152.	0.5	71
49	Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surface and Coatings Technology, 2010, 204, 2683-2688.	2.2	70
50	Design of next generation thermal barrier coatings — Experiments and modelling. Surface and Coatings Technology, 2013, 220, 20-26.	2.2	70
51	Effect of processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings. Journal of the European Ceramic Society, 2019, 39, 1507-1513.	2.8	70
52	Processing and Properties of Nanograin Silicon Carbide. Journal of the American Ceramic Society, 1999, 82, 2585-2593.	1.9	69
53	A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surface and Coatings Technology, 2010, 205, 2287-2295.	2.2	69
54	New Generation Perovskite Thermal Barrier Coating Materials. Journal of Thermal Spray Technology, 2008, 17, 831-837.	1.6	67

#	Article	IF	CITATIONS
55	Testing and evaluation of thermal-barrier coatings. MRS Bulletin, 2012, 37, 911-916.	1.7	66
56	Enhanced Characteristics of HVOF-sprayed MCrAlY Bond Coats for TBC Applications. Journal of Thermal Spray Technology, 2011, 20, 1209-1216.	1.6	65
57	Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Materials and Design, 2018, 144, 192-208.	3.3	63
58	Plasma_sprayed components for SOFC applications. Surface and Coatings Technology, 2006, 201, 2002-2005.	2.2	61
59	Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	1.1	59
60	Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying. Surface and Coatings Technology, 2017, 313, 191-201.	2.2	58
61	Correlation Between Spraying Conditions and Microcrack Density and Their Influence on Thermal Cycling Life of Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2004, 13, 396-404.	1.6	57
62	Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells. Journal of Power Sources, 2014, 256, 52-60.	4.0	57
63	Densification of ultrafine SiC powders. Journal of Materials Science, 1996, 31, 3623-3637.	1.7	55
64	Atmospheric plasma spraying of yttria-stabilized zirconia coatings with specific porosity. Surface and Coatings Technology, 2009, 204, 172-179.	2.2	54
65	Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-mode interfacial fracture toughness and sintering behavior. Surface and Coatings Technology, 2016, 286, 119-128.	2.2	54
66	Sintering resistance of advanced plasma-sprayed thermal barrier coatings with strain-tolerant microstructures. Journal of the European Ceramic Society, 2018, 38, 5092-5100.	2.8	54
67	Processing and properties of nanophase non-oxide ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 301, 59-68.	2.6	52
68	Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests. Journal of the European Ceramic Society, 2020, 40, 480-490.	2.8	51
69	Erosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray. Journal of Thermal Spray Technology, 2017, 26, 108-115.	1.6	49
70	Recent Activities in the Field of Thermal Barrier Coatings Including Burner Rig Testing in the European Union. Advanced Engineering Materials, 2008, 10, 907-921.	1.6	47
71	Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection. Surface and Coatings Technology, 2017, 324, 36-47.	2.2	46
72	Synthesis of Ti3SiC2 MAX phase powder by a molten salt shielded synthesis (MS3) method in air. Journal of the European Ceramic Society, 2019, 39, 3651-3659.	2.8	46

#	Article	IF	CITATIONS
73	Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure. Journal of Thermal Spray Technology, 2010, 19, 495-501.	1.6	45
74	Functionally graded vacuum plasma sprayed and magnetron sputtered tungsten/EUROFER97 interlayers for joints in helium-cooled divertor components. Journal of Nuclear Materials, 2013, 436, 29-39.	1.3	42
75	Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics. Journal of Thermal Spray Technology, 2012, 21, 363-371.	1.6	41
76	Mechanical properties of zirconia composite ceramics. Ceramics International, 2013, 39, 7595-7603.	2.3	41
77	Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack. Surface and Coatings Technology, 2017, 324, 222-235.	2.2	39
78	Environmental resistance of Cr ₂ AlC MAX phase under thermal gradient loading using a burner rig. Journal of the American Ceramic Society, 2018, 101, 1841-1846.	1.9	39
79	Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-flight Measurements of Atmospheric Plasma-Sprayed Particles. International Journal of Thermophysics, 2008, 29, 764-786.	1.0	38
80	Preparation and sintering behaviour of La5.4WO12â^ asymmetric membranes with optimised microstructure for hydrogen separation. Journal of Membrane Science, 2015, 492, 439-451.	4.1	38
81	Tailored microstructures of gadolinium zirconate/YSZ multi-layered thermal barrier coatings produced by suspension plasma spray: Durability and erosion testing. Journal of Materials Processing Technology, 2019, 264, 283-294.	3.1	38
82	Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application. Journal of Thermal Spray Technology, 2010, 19, 303-310.	1.6	37
83	The processing of vacuum plasma-sprayed tungsten–copper composite coatings for high heat flux components. Fusion Engineering and Design, 2003, 66-68, 259-263.	1.0	36
84	Impact of Al2O3-40 wt.% TiO2 feedstock powder characteristics on the sprayability, microstructure and mechanical properties of plasma sprayed coatings. Journal of the European Ceramic Society, 2019, 39, 5391-5402.	2.8	36
85	Thermal cycling performances of multilayered yttriaâ€stabilized zirconia/gadolinium zirconate thermal barrier coatings. Journal of the American Ceramic Society, 2020, 103, 2048-2061.	1.9	36
86	Thermal cycling testing of TBCs on Cr2AlC MAX phase substrates. Surface and Coatings Technology, 2018, 340, 17-24.	2.2	35
87	Cr ₂ AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges. Journal of the American Ceramic Society, 2020, 103, 2362-2375.	1.9	35
88	Modeling precursor diffusion and reaction of atomic layer deposition in porous structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	34
89	Highâ€ŧemperature oxidation and compressive strength of Cr ₂ AlC <scp>MAX</scp> phase foams with controlled porosity. Journal of the American Ceramic Society, 2018, 101, 542-552.	1.9	34
90	Coatings with Columnar Microstructures for Thermal Barrier Applications. Advanced Engineering Materials, 2020, 22, 1900988.	1.6	34

#	Article	IF	CITATIONS
91	Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coat layers. Journal of the European Ceramic Society, 2019, 39, 860-867.	2.8	33
92	High-velocity water vapor corrosion of Yb-silicate: Sprayed vs. sintered body. Scripta Materialia, 2020, 178, 468-471.	2.6	33
93	Resistance of pure and mixed rare earth silicates against calciumâ€magnesiumâ€aluminosilicate (CMAS): A comparative study. Journal of the American Ceramic Society, 2020, 103, 7056-7071.	1.9	33
94	Process diagnostics in suspension plasma spraying. Surface and Coatings Technology, 2010, 205, 961-966.	2.2	32
95	Suspension and Air Plasmaâ€Sprayed Ceramic Thermal Barrier Coatings with High Infrared Reflectance. International Journal of Applied Ceramic Technology, 2012, 9, 561-574.	1.1	32
96	Ceramic materials for H2 transport membranes applicable for gas separation under coal-gasification-related conditions. Journal of the European Ceramic Society, 2014, 34, 2381-2389.	2.8	32
97	Investigations on the Nature of Ceramic Deposits in Plasma Spray–Physical Vapor Deposition. Journal of Thermal Spray Technology, 2017, 26, 83-92.	1.6	32
98	A Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends. Journal of Thermal Spray Technology, 2022, 31, 685-698.	1.6	32
99	New Environmental Barrier Coating System on Carbon-Fiber Reinforced Silicon Carbide Composites. Journal of Thermal Spray Technology, 2005, 14, 268-272.	1.6	31
100	Modelling of arc behaviour inside a F4 APS torch. Journal Physics D: Applied Physics, 2006, 39, 3323-3331.	1.3	31
101	Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells. Journal of Power Sources, 2017, 363, 185-192.	4.0	31
102	Sintering behavior of columnar thermal barrier coatings deposited by axial suspension plasma spraying (SPS). Journal of the European Ceramic Society, 2019, 39, 482-490.	2.8	31
103	Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD). Surface and Coatings Technology, 2017, 318, 170-177.	2.2	30
104	Advanced crystallographic study of the columnar growth of YZS coatings produced by PS-PVD. Journal of the European Ceramic Society, 2018, 38, 2449-2453.	2.8	30
105	Improving Powder Injection in Plasma Spraying by Optical Diagnostics of the Plasma and Particle Characterization. Journal of Thermal Spray Technology, 2011, 20, 3-11.	1.6	29
106	Impact of processing conditions and feedstock characteristics on thermally sprayed MCrAlY bondcoat properties. Surface and Coatings Technology, 2017, 318, 114-121.	2.2	29
107	Metal-Glass Based Composites for Novel TBC-Systems. Materialwissenschaft Und Werkstofftechnik, 2001, 32, 669-672.	0.5	28
108	Plasma spraying of efficient photoactive TiO2 coatings. Surface and Coatings Technology, 2013, 220, 40-43.	2.2	27

#	Article	IF	CITATIONS
109	Environmental Barrier Coatings Made by Different Thermal Spray Technologies. Coatings, 2019, 9, 784.	1.2	27
110	YAlO3—A Novel Environmental Barrier Coating for Al2O3/Al2O3–Ceramic Matrix Composites. Coatings, 2019, 9, 609.	1.2	26
111	Investigation on growth mechanisms of columnar structured YSZ coatings in Plasma Spray-Physical Vapor Deposition (PS-PVD). Journal of the European Ceramic Society, 2019, 39, 3129-3138.	2.8	26
112	Unique performance of thermal barrier coatings made of yttriaâ€stabilized zirconia at extreme temperatures (>1500°C). Journal of the American Ceramic Society, 2021, 104, 463-471.	1.9	26
113	Plasma Spray Physical Vapor Deposition of La1â^'x Sr x Co y Fe1â^'y O3â^'î´ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports. Journal of Thermal Spray Technology, 2014, 23, 213-219.	1.6	25
114	Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test. Journal of Thermal Spray Technology, 2015, 24, 1205-1212.	1.6	25
115	Monte Carlo simulation of column growth in plasma spray physical vapor deposition process. Surface and Coatings Technology, 2018, 335, 188-197.	2.2	25
116	Microstructure and phase evolution of atmospheric plasma sprayed Mn-Co-Fe oxide protection layers for solid oxide fuel cells. Journal of the European Ceramic Society, 2019, 39, 449-460.	2.8	25
117	Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings. Journal of Thermal Spray Technology, 2018, 27, 654-666.	1.6	24
118	Vacuum plasma spraying of functionally graded tungsten/EUROFER97 coatings for fusion applications. Fusion Engineering and Design, 2018, 133, 148-156.	1.0	24
119	In situ SANS study of pore microstructure in YSZ thermal barrier coatings. Acta Materialia, 2004, 52, 3305-3312.	3.8	23
120	Atmospheric Plasma Spraying of Single Phase Lanthanum Zirconate Thermal Barrier Coatings with Optimized Porosity. Coatings, 2016, 6, 49.	1.2	23
121	Aging of atmospherically plasma sprayed chromium evaporation barriers. Surface and Coatings Technology, 2016, 291, 115-122.	2.2	23
122	Development of W-coating with functionally graded W/EUROFER-layers for protection of First-Wall materials. Fusion Engineering and Design, 2018, 128, 58-67.	1.0	23
123	Superior cyclic life of thermal barrier coatings with advanced bond coats on single-crystal superalloys. Surface and Coatings Technology, 2019, 361, 150-158.	2.2	23
124	Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti ₂ AlC ceramics. Journal of the American Ceramic Society, 2021, 104, 1669-1688.	1.9	23
125	Microstructure and phase composition evolution of silicon-hafnia feedstock during plasma spraying and following cyclic oxidation. Acta Materialia, 2021, 214, 117007.	3.8	23
126	Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content. Journal of Thermal Spray Technology, 2017, 26, 868-879.	1.6	22

#	Article	IF	CITATIONS
127	Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions. Journal of Thermal Spray Technology, 2017, 26, 1423-1433.	1.6	22
128	Conditions for nucleation and growth in the substrate boundary layer at plasma spray-physical vapor deposition (PS-PVD). Surface and Coatings Technology, 2019, 371, 417-427.	2.2	22
129	Preliminary study on the TriplexProâ,"¢-200 gun for atmospheric plasma spraying of yttria-stabilized zirconia. Surface and Coatings Technology, 2008, 202, 4374-4381.	2.2	21
130	Application of High-Velocity Oxygen-Fuel (HVOF) Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings. Coatings, 2017, 7, 55.	1.2	21
131	Mechanism for breakaway oxidation of the Ti2AlC MAX phase. Acta Materialia, 2021, 215, 117025.	3.8	21
132	Potential of nanocrystalline low-Z materials for plasma facing, structural applications in fusion reactors. Journal of Nuclear Materials, 1996, 233-237, 708-712.	1.3	20
133	Suspension plasma spraying of TiO2 for the manufacture of photovoltaic cells. Surface and Coatings Technology, 2009, 203, 2146-2149.	2.2	20
134	Partial Evaporation of Strontium Zirconate During Atmospheric Plasma Spraying. Journal of Thermal Spray Technology, 2009, 18, 694-701.	1.6	20
135	MCrAlY Bondcoats by High-Velocity Atmospheric Plasma Spraying. Journal of Thermal Spray Technology, 2014, 23, 140-146.	1.6	20
136	Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings. Journal of Thermal Spray Technology, 2018, 27, 566-580.	1.6	20
137	Thermal barrier coatings with novel architectures for diesel engine applications. Surface and Coatings Technology, 2020, 396, 125950.	2.2	20
138	Process Design and Monitoring for Plasma Sprayed Abradable Coatings. Journal of Thermal Spray Technology, 2010, 19, 756-764.	1.6	19
139	Scale Formation of Alloy 602 CA During Isothermal Oxidation at 800–1100°C in Different Types of Water Vapor Containing Atmospheres. Oxidation of Metals, 2015, 84, 661-694.	1.0	19
140	Atomic-layer-controlled deposition of TEMAZ/O2–ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells. Surface and Coatings Technology, 2016, 288, 211-220.	2.2	19
141	Probabilistic lifetime model for atmospherically plasma sprayed thermal barrier coating systems. Mechanics of Materials, 2016, 93, 199-208.	1.7	19
142	Manufacturing of Composite Coatings by Atmospheric Plasma Spraying Using Different Feed-Stock Materials as YSZ and MoSi2. Journal of Thermal Spray Technology, 2017, 26, 708-716.	1.6	19
143	Lanthanum tungstate membranes for H2 extraction and CO2 utilization: Fabrication strategies based on sequential tape casting and plasma-spray physical vapor deposition. Separation and Purification Technology, 2019, 219, 100-112.	3.9	19
144	An investigation on burner rig testing of environmental barrier coatings for aerospace applications. Journal of the European Ceramic Society, 2020, 40, 6236-6240.	2.8	19

#	Article	IF	CITATIONS
145	Title is missing!. Journal of Materials Science, 1999, 34, 257-265.	1.7	18
146	Thin Electrolyte Layers for SOFC via Wet Powder Spraying (WPS). Advanced Engineering Materials, 2002, 4, 659-662.	1.6	18
147	Controlling the oxygen contents in vacuum plasma sprayed metal alloy coatings. Surface and Coatings Technology, 2007, 201, 4796-4799.	2.2	18
148	Decomposition of Ba(Mg1/3Ta2/3)O3 perovskite during atmospheric plasma spraying. Surface and Coatings Technology, 2012, 206, 2515-2520.	2.2	18
149	La–Sr–Fe–Co oxygen transport membranes on metal supports deposited by low pressure plasma spraying-physical vapour deposition. Journal of Membrane Science, 2013, 442, 119-123.	4.1	18
150	Development of Functionally Graded Tungsten/EUROFER Coating System for First Wall Application. Fusion Science and Technology, 2015, 68, 578-581.	0.6	18
151	Architecture designs for extending thermal cycling lifetime of suspension plasma sprayed thermal barrier coatings. Ceramics International, 2019, 45, 18471-18479.	2.3	18
152	Comparison of Atmospheric Plasma Sprayed Anode Layers for SOFCs Using Different Feedstock. Journal of Thermal Spray Technology, 2006, 15, 593-597.	1.6	17
153	Thick tool steel coatings using HVOF spraying for wear resistance applications. Surface and Coatings Technology, 2010, 205, 2449-2454.	2.2	17
154	Deposition of La1â^'x Sr x Fe1â^'y Co y O3â^'Î^ Coatings with Different Phase Compositions and Microstructures by Low-Pressure Plasma Spraying-Thin Film (LPPS-TF) Processes. Journal of Thermal Spray Technology, 2012, 21, 441-447.	1.6	17
155	Influence of vacuum heat treatment parameters on the surface composition of MCrAlY coatings. Surface and Coatings Technology, 2013, 215, 24-29.	2.2	17
156	High-temperature behavior of oxide dispersion strengthening CoNiCrAlY. Materials at High Temperatures, 2018, 35, 108-119.	0.5	17
157	Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing. Journal of the American Ceramic Society, 2019, 102, 6163-6175.	1.9	17
158	Correlation of Microstructure and Properties of Cold Gas Sprayed INCONEL 718 Coatings. Journal of Thermal Spray Technology, 2020, 29, 1455-1465.	1.6	17
159	Columnar Thermal Barrier Coatings Produced by Different Thermal Spray Processes. Journal of Thermal Spray Technology, 2021, 30, 1437-1452.	1.6	17
160	Investigation and Comparison of In-Flight Particle Velocity During the Plasma-Spray Process as Measured by Laser Doppler Anemometry and DPV-2000. Journal of Thermal Spray Technology, 2013, 22, 892-900.	1.6	16
161	Near Net Shaping of Monolithic and Composite <scp>MAX</scp> Phases by Injection Molding. Journal of the American Ceramic Society, 2016, 99, 3210-3213.	1.9	16
162	Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering. ACS Applied Materials & amp; Interfaces, 2015, 7, 22594-22600.	4.0	15

#	Article	IF	CITATIONS
163	Investigations on the Initial Stress Evolution During Atmospheric Plasma Spraying of YSZ by In Situ Curvature Measurement. Journal of Thermal Spray Technology, 2016, 25, 672-683.	1.6	15
164	Degradation of zirconia in moisture. Corrosion Science, 2020, 176, 109038.	3.0	15
165	Metal-Glass Based Composites for Application in TBC-Systems. Journal of Thermal Spray Technology, 2006, 15, 652-656.	1.6	14
166	Detection of Wear in One-Cathode Plasma Torch Electrodes and its Impact on Velocity and Temperature of Injected Particles. Journal of Thermal Spray Technology, 2007, 16, 933-939.	1.6	14
167	Failure mechanisms of magnesia alumina spinel abradable coatings under thermal cyclic loading. Journal of the European Ceramic Society, 2013, 33, 3335-3343.	2.8	14
168	Simulation of the effect of the porous support on flux through an asymmetric oxygen transport membrane. Journal of Membrane Science, 2017, 524, 334-343.	4.1	14
169	Cr2AlC MAX phase foams by replica method. Materials Letters, 2019, 240, 271-274.	1.3	14
170	Thermal Spray Processes for the Repair of Gas Turbine Components. Advanced Engineering Materials, 2020, 22, 1901237.	1.6	14
171	Correlation of Process Conditions, Porosity Levels and Crystallinity in Atmospherically Plasma Sprayed Yb2Si2O7 Environmental Barrier Coatings. Journal of Composites Science, 2021, 5, 198.	1.4	14
172	Development of cold work tool steel based-MMC coating using HVOF spraying and its HIP densification behaviour. Surface and Coatings Technology, 2010, 204, 3858-3863.	2.2	13
173	Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings. Journal of Thermal Spray Technology, 2015, 24, 1187-1194.	1.6	13
174	A TEM Investigation of Columnar-Structured Thermal Barrier Coatings Deposited by Plasma Spray-Physical Vapor Deposition (PS-PVD). Plasma Chemistry and Plasma Processing, 2018, 38, 791-802.	1.1	13
175	High-temperature materials for power generation in gas turbines. , 2020, , 3-62.		13
176	Oxidation behavior of mechanically alloyed chromium based alloys. Fresenius' Journal of Analytical Chemistry, 1997, 358, 230-232.	1.5	12
177	Evolution of microstructure and mechanical properties of coated Co-base superalloys during heat treatment and thermal exposure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 374-381.	2.6	12
178	Monitoring and Improving the Reliability of Plasma Spray Processes. Journal of Thermal Spray Technology, 2017, 26, 799-810.	1.6	12
179	Surface roughening of Al2O3/Al2O3-ceramic matrix composites by nanosecond laser ablation prior to thermal spraying. Journal of Laser Applications, 2019, 31, .	0.8	12
180	Development progress of coating first wall components with functionally graded W/EUROFER layers on laboratory scale. Nuclear Fusion, 2020, 60, 126004.	1.6	12

#	Article	IF	CITATIONS
181	Oxidation kinetics of atmospheric plasma sprayed environmental barrier coatings. Journal of the European Ceramic Society, 2022, 42, 5122-5128.	2.8	12
182	Entwicklung von Oxid - Keramik zur Anwendung als WĤmedĤmmschichten. Materialwissenschaft Und Werkstofftechnik, 2001, 32, 673-677.	0.5	11
183	Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films. Journal of Power Sources, 2015, 281, 326-333.	4.0	11
184	Controlling the stress state of La1â^'Sr Co Fe1â^'O3â^' oxygen transport membranes on porous metallic supports deposited by plasma spray–physical vapor process. Journal of Membrane Science, 2016, 503, 1-7.	4.1	11
185	Improved Adhesion of Different Environmental Barrier Coatings on Al ₂ O ₃ /Al ₂ O ₃ â€Ceramic Matrix Composites. Advanced Engineering Materials, 2020, 22, 2000087.	1.6	11
186	Short SiC fiber/Ti ₃ SiC ₂ MAX phase composites: Fabrication and creep evaluation. Journal of the American Ceramic Society, 2020, 103, 7072-7081.	1.9	11
187	Simulation of the effect of realistic surface textures on thermally induced topcoat stress fields by two-dimensional interface functions. Surface and Coatings Technology, 2014, 258, 181-188.	2.2	10
188	Plasma Spraying of Ceramics with Particular Difficulties in Processing. Journal of Thermal Spray Technology, 2015, 24, 30.	1.6	10
189	Excitation Temperature and Constituent Concentration Profiles of the Plasma Jet Under Plasma Spray-PVD Conditions. Plasma Chemistry and Plasma Processing, 2017, 37, 1293-1311.	1.1	10
190	Determination of interface toughness of functionally graded tungsten/EUROFER multilayer at 550â€ [–] °C by analytical and experimental methods. Engineering Fracture Mechanics, 2018, 202, 487-499.	2.0	10
191	Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications. Coatings, 2018, 8, 176.	1.2	10
192	Oxide Dispersion Strengthened Bond Coats with Higher Alumina Content: Oxidation Resistance and Influence on Thermal Barrier Coating Lifetime. Oxidation of Metals, 2019, 92, 167-194.	1.0	10
193	A constitutive model for the sintering of suspension plasmaâ€sprayed thermal barrier coating with vertical cracks. Journal of the American Ceramic Society, 2019, 102, 6202-6212.	1.9	10
194	Compressive creep of SiC whisker/Ti ₃ SiC ₂ composites at high temperature in air. Journal of the American Ceramic Society, 2020, 103, 5952-5965.	1.9	10
195	Improvement of New Thermal Barrier Coating Systems Using a Layered Or Graded Structure. Ceramic Engineering and Science Proceedings, 0, , 435-442.	0.1	10
196	Modelling of Crack Growth Near the Metallic-Ceramic Interface during Thermal Cycling of Air Plasma Sprayed Thermal Barrier Coatings. Key Engineering Materials, 2007, 333, 263-268.	0.4	9
197	Damage Characterization of Thermal Barrier Coatings by Acoustic Emission and Thermography. Advanced Engineering Materials, 2012, 14, 790-794.	1.6	9
198	Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats. Surface and Coatings Technology, 2014, 258, 608-614.	2.2	9

#	Article	IF	CITATIONS
199	Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS). Journal of Thermal Spray Technology, 2014, 24, 144.	1.6	9
200	Emergence and impact of Al ₂ TiO ₅ in Al ₂ O ₃ -TiO ₂ APS coatings. IOP Conference Series: Materials Science and Engineering, 0, 480, 012007.	0.3	9
201	Mechanical characterisation of the protective Al2O3 scale in Cr2AlC MAX phases. Journal of the European Ceramic Society, 2019, 39, 5149-5155.	2.8	9
202	Thermo-mechanical response of FG tungsten/EUROFER multilayer under high thermal loads. Journal of Nuclear Materials, 2019, 519, 137-144.	1.3	9
203	Performance of wear resistant MCrAlY coatings with oxide dispersion strengthening. Wear, 2020, 444-445, 203116.	1.5	9
204	Degradation and lifetime of self-healing thermal barrier coatings containing MoSi2 as self-healing particles in thermo-cycling testing. Surface and Coatings Technology, 2022, 437, 128353.	2.2	9
205	HVOF Spraying of Fe-Based MMC Coatings with In Situ Formation of Hard Particles by Hot Isostatic Pressing. Journal of Thermal Spray Technology, 2012, 21, 344-354.	1.6	8
206	Isothermal aging of a γ′-strengthened Co–Al–W alloy coated with vacuum plasma-sprayed MCrAlY bond coats. Surface and Coatings Technology, 2015, 276, 360-367.	2.2	8
207	Effect of Plasma Enthalpy on the Structure of La ₂ Zr ₂ O ₇ Coatings Prepared by Suspension Plasma Spraying. Journal of the American Ceramic Society, 2016, 99, 1086-1091.	1.9	8
208	Conventional and New Materials for Thermal Barrier Coatings. , 2001, , 199-216.		8
209	Optimizing of the Reflectivity of Air Plasma Sprayed Ceramic Thermal Barrier Coatings. , 2009, , 99-113.		7
210	Deposition and Oxidation of Oxide-Dispersed CoNiCrAlY Bondcoats. Journal of Thermal Spray Technology, 2014, 23, 147-153.	1.6	7
211	Modelling and proper evaluation of volumetric kinetics of hydrogen desorption by metal hydrides. International Journal of Hydrogen Energy, 2015, 40, 10111-10122.	3.8	7
212	Modelling and evaluation of hydrogen desorption kinetics controlled by surface reaction and bulk diffusion for magnesium hydride. RSC Advances, 2015, 5, 5363-5371.	1.7	7
213	Recent developments in plasma spray processes for applications in energy technology. IOP Conference Series: Materials Science and Engineering, 2017, 181, 012001.	0.3	7
214	In situ investigation of atmospheric plasma-sprayed Mn–Co–Fe–O by synchrotron X-ray nano-tomography. Journal of Materials Science, 2020, 55, 12725-12736.	1.7	7
215	Influence of Process Parameters on the Aerosol Deposition (AD) of Yttria-Stabilized Zirconia Particles. Journal of Thermal Spray Technology, 2021, 30, 488-502.	1.6	7
216	Lanthanum-Lithium Hexaaluminate—A New Material for Thermal Barrier Coatings in Magnetoplumbite Structure—Material and Process Development. Ceramic Engineering and Science Proceedings, 0, , 87-99.	0.1	7

#	Article	IF	CITATIONS
217	Study of stability of microstructure and residual strain after thermal loading of plasma sprayed YSZ by through surface neutron scanning. Physica B: Condensed Matter, 2018, 551, 69-78.	1.3	6
218	Thermal fatigue behavior of functionally graded W/EUROFER-layer systems using a new test apparatus. Fusion Engineering and Design, 2020, 154, 111550.	1.0	6
219	Processing and oxidation response of Cr2AlC MAX-phase composites containing ceramic fibers. Open Ceramics, 2021, 6, 100090.	1.0	6
220	Oxidation behavior of double-ceramic-layer thermal barrier coatings deposited by atmospheric plasma spraying and suspension plasma spraying. Ceramics International, 2022, 48, 23938-23945.	2.3	6
221	PS-PVD Processing of Single-Phase Lanthanum Tungstate Layers for Hydrogen-Related Applications. Journal of Thermal Spray Technology, 2019, 28, 1554-1564.	1.6	5
222	Water vapor corrosion test using supersonic gas velocities. Journal of the American Ceramic Society, 2019, 102, 6850-6862.	1.9	5
223	Cold gas spraying of Ti-48Al-2Cr-2Nb intermetallic for jet engine applications. Surface and Coatings Technology, 2019, 371, 203-210.	2.2	5
224	Phase Transformation-Induced Changes in Microstructure and Residual Stresses in Thermally Sprayed MnCoFeO4 Protective Coatings. Journal of Thermal Spray Technology, 2020, 29, 1242-1255.	1.6	5
225	Crystalline ytterbium disilicate environmental barrier coatings made by high velocity oxygen fuel spraying. International Journal of Applied Ceramic Technology, 2022, 19, 210-220.	1.1	5
226	Effect of Low-CTE Oxide-Dispersion-Strengthened Bond Coats on Columnar-Structured YSZ Coatings. Coatings, 2022, 12, 396.	1.2	5
227	Characterization of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings by Cathodoluminescence. Journal of Thermal Spray Technology, 2009, 18, 572-577.	1.6	4
228	High-precision green densities of thick films and their correlation with powder, ink, and film properties. Journal of the European Ceramic Society, 2014, 34, 3897-3916.	2.8	4
229	The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1â^'x Sr x Co y Fe1â^'y O3â^'Î Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition. Journal of Thermal Spray Technology, 2016, 25, 631-638.	1.6	4
230	Miniaturization of low cycle fatigueâ€ŧesting of single crystal superalloys at high temperature for uncoated and coated specimens. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 777-787.	0.5	4
231	Crystal structure analysis and highâ€ŧemperature phase transitions of complex rareâ€earth perovskite, La ₂ (Al _{1/2} MgTa _{1/2})O ₆ . Journal of the American Ceramic Society, 2020, 103, 1404-1413.	1.9	4
232	Determining Interface Fracture Toughness in Multi Layered Environmental Barrier Coatings with Laser Textured Silicon Bond Coat. Coatings, 2021, 11, 55.	1.2	4
233	Diffusion and Phase Transformation at the Interface between an Austenitic Substrate and a Thermally Sprayed Coating of Ledeburitic Coldâ€Work Tool Steel. Steel Research International, 2011, 82, 671-682.	1.0	3
234	Study on the Effects of Wet Ball Milling and Boron Nitride Additive on Li-N-H Hydrogen Storage System. Energy Procedia, 2012, 29, 147-155.	1.8	3

#	Article	IF	CITATIONS
235	Diffusion-Related SOFC Stack Degradation. ECS Transactions, 2017, 78, 2223-2230.	0.3	3
236	Influence of Different Annealing Atmospheres on the Mechanical Properties of Freestanding MCrAlY Bond Coats Investigated by Micro-Tensile Creep Tests. Metals, 2019, 9, 692.	1.0	3
237	Microtensile creep testing of freestanding MCrAlY bond coats. Journal of Materials Research, 2019, 34, 2643-2652.	1.2	3
238	Influence of Substrate Removal Method on the Properties of Free-Standing YSZ Coatings. Coatings, 2021, 11, 449.	1.2	3
239	New material concepts for the next generation of plasma-sprayed thermal barrier coatings. , 2004, 13, 76.		3
240	Growth of Boric Acid Crystallites on the Surface of Boron-Doped Silicon Carbide Samples. Journal of the American Ceramic Society, 1996, 79, 1699-1702.	1.9	2
241	Gas-Tight Zirconia Electrolyte Layers for SOFCs by Atmospheric Plasma-Spraying. ECS Proceedings Volumes, 2005, 2005-07, 1016-1024.	0.1	2
242	Title is missing!. Surface and Coatings Technology, 2010, 205, 937.	2.2	2
243	Residual Stress Depth Distributions for Atmospheric Plasma Sprayed MnCo _{1.9} Fe _{0.1} O ₄ Spinel Layers on Crofer Steel Substrate. Materials Science Forum, 0, 905, 174-181.	0.3	2
244	Coated single crystal superalloys: processing, characterization, and modeling of protective coatings. , 2022, , 283-338.		2
245	Additive Manufacturing of Columnar Thermal Barrier Coatings by Laser Cladding of Ceramic Feedstock. Advanced Materials Technologies, 2022, 7, .	3.0	2
246	Emerging and Innovative Processes in Thermal Spraying. Journal of Thermal Spray Technology, 2011, 20, 645-645.	1.6	0
247	JTST Special Issue on "Coatings for Energy Applications― Journal of Thermal Spray Technology, 2013, 22, 558-558.	1.6	0
248	Reaction Behavior of the Li-N-H Hydrogen Storage System with Boron Nitride as an Additive. Metallurgical and Materials Transactions E, 2015, 2, 50-57.	0.5	0
249	Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites. Materials, 2021, 14, 3632.	1.3	0
250	High-Temperature Behaviour of Thermal Barrier and Bond Coatings in Oxidizing and Corrosive Atmospheres. , 2006, , 629-657.		0