
Jon-Paul Bingham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/679682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Hawaiian Heritage Sweet Potato (Ipomoea batatas (L.) Lam.) Breeding Lines. Agronomy, 2021, 11, 1545.	3.0	1
2	Near-daily reconstruction of tropical intertidal limpet life-history using secondary-ion mass spectrometry. Communications Earth & Environment, 2021, 2, .	6.8	0
3	Carotenoid composition and bioaccessibility of papaya cultivars from Hawaii. Journal of Food Composition and Analysis, 2021, 101, 103984.	3.9	8
4	Genome-informed loop-mediated isothermal amplification assay for specific detection of Pectobacterium parmentieri in infected potato tissues and soil. Scientific Reports, 2021, 11, 21948.	3.3	13
5	Anti-inflammatory activities of Waltheria indica extracts by modulating expression of IL-1B, TNF-α, TNFRII and NF-κB in human macrophages. Inflammopharmacology, 2020, 28, 525-540.	3.9	18
6	From nature to creation: Going around in circles, the art of peptide cyclization. Bioorganic and Medicinal Chemistry, 2018, 26, 1135-1150.	3.0	31
7	Regulation of Hepatic UGT2B15 by Methylation in Adults of Asian Descent. Pharmaceutics, 2018, 10, 6.	4.5	6
8	Maturation, spawning, and larval development in captive yellowfoot limpets (<i>Cellana) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 Tf 0.8	50 462 Td (
9	tâ€boc synthesis of huwentoxinâ€i through native chemical ligation incorporating a trifluoromethanesulfonic acid cleavage strategy. Biopolymers, 2016, 106, 737-745.	2.4	3

10	Hard coral (Porites lobata) extracts and homarine on cytochrome P450 expression in Hawaiian butterflyfishes with different feeding strategies. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 179, 57-63.	2.6	2
11	Dissolved amino acids in oceanic basaltic basement fluids. Geochimica Et Cosmochimica Acta, 2015, 164, 175-190.	3.9	13
12	Screening Carica papaya native promoters driving stilbene synthase expression in Arabidopsis thaliana for resveratrol glucoside (piceid) synthesis. Plant Biotechnology Reports, 2015, 9, 307-317.	1.5	5
13	Cone shell envenomation: epidemiology, pharmacology and medical care. Diving and Hyperbaric Medicine, 2015, 45, 200-7.	0.5	5
14	A Carbon-Nitrogen Lyase from Leucaena leucocephala Catalyzes the First Step of Mimosine Degradation Â. Plant Physiology, 2014, 164, 922-934.	4.8	24
15	Interaction of the BKCachannel gating ring with dendrotoxins. Channels, 2014, 8, 421-432.	2.8	2
16	Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides. Amino Acids, 2014, 46, 125-151.	2.7	19
17	The Emergence of Cyclic Peptides: The Potential of Bioengineered Peptide Drugs. International Journal of Peptide Research and Therapeutics, 2014, 20, 545-551.	1.9	33
18	Conotoxins and their regulatory considerations. Regulatory Toxicology and Pharmacology, 2014, 70, 197-202.	2.7	8

2

Jon-Paul Bingham

#	Article	IF	CITATIONS
19	An O-Acetylserine (thiol) Lyase from Leucaena leucocephala Is a Cysteine Synthase But Not a Mimosine Synthase. Applied Biochemistry and Biotechnology, 2014, 173, 1157-1168.	2.9	8
20	A 21st-century approach to age-old problems: the ascension of biologics in clinical therapeutics. Drug Discovery Today, 2014, 19, 1109-1113.	6.4	27
21	Native Chemical Ligation: A Boon to Peptide Chemistry. Molecules, 2014, 19, 14461-14483.	3.8	60
22	Conotoxins. , 2014, , 467-484.		1
23	midD-encoded â€~rhizomimosinase' from Rhizobium sp. strain TAL1145 is a C–N lyase that catabolizes L-mimosine into 3-hydroxy-4-pyridone, pyruvate and ammonia. Amino Acids, 2013, 44, 1537-1547.	2.7	10
24	A â€~conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile—The pharmacological importance of post-translational modifications. Peptides, 2013, 49, 145-158.	2.4	14
25	High performance liquid chromatography method for rapid quantification of phorbol esters in Jatropha curcas seed. Industrial Crops and Products, 2013, 49, 211-219.	5.2	29
26	Conotoxin truncation as a post-translational modification to increase the pharmacological diversity within the milked venom of Conus magus. Toxicon, 2013, 70, 170-178.	1.6	27
27	Characterization of Oâ€acetylserine (thiol) lyase from Leucaena leucocephala. FASEB Journal, 2013, 27, 580.3.	0.5	0
28	Drugs from Slugs. Part II – Conopeptide bioengineering. Chemico-Biological Interactions, 2012, 200, 92-113.	4.0	13
29	Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering. Toxins, 2012, 4, 1082-1119.	3.4	69
30	Analysis of a cone snail's killer cocktail – The milked venom of Conus geographus. Toxicon, 2012, 60, 1166-1170.	1.6	21
31	Cone snail milked venom dynamics – A quantitative study of Conus purpurascens. Toxicon, 2012, 60, 83-94.	1.6	20
32	Drugs from slugs—Past, present and future perspectives of ï‰-conotoxin research. Chemico-Biological Interactions, 2010, 183, 1-18.	4.0	65
33	Design development and application of a fluorescent probe to study changes in hERG channel density and trafficking; a mechanistic basis for cardiac arrhythmia. FASEB Journal, 2010, 24, 490.2.	0.5	0
34	Synthesis of an iberiotoxin derivative by chemical ligation: A method for improved yields of cysteine-rich scorpion toxin peptides. Peptides, 2009, 30, 1049-1057.	2.4	8
35	Tarantula Huwentoxin-IV Inhibits Neuronal Sodium Channels by Binding to Receptor Site 4 and Trapping the Domain II Voltage Sensor in the Closed Configuration. Journal of Biological Chemistry, 2008, 283, 27300-27313.	3.4	154
36	Synthesis of a Biotin Derivative of Iberiotoxin:  Binding Interactions with Streptavidin and the BK Ca2+-Activated K+ Channel Expressed in a Human Cell Line. Bioconjugate Chemistry, 2006, 17, 689-699.	3.6	17

JON-PAUL BINGHAM

#	Article	IF	CITATIONS
37	Optimizing the connectivity in disulfide-rich peptides: α-conotoxin SII as a case study. Analytical Biochemistry, 2005, 338, 48-61.	2.4	18
38	Functional Role and Affinity of Inorganic Cations in Stabilizing the Tetrameric Structure of the KcsA K+ Channel. Journal of General Physiology, 2005, 126, 271-283.	1.9	35
39	How Much at Risk Are Cone Snails?. Science, 2004, 303, 955-957.	12.6	14
40	Determining sequences and post-translational modifications of novel conotoxins inConus victoriae using cDNA sequencing and mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 548-557.	1.6	56
41	Anatomical Correlates of Venom Production in Conus californicus. Biological Bulletin, 2002, 203, 27-41.	1.8	52
42	Three-Dimensional Solution Structure of α-Conotoxin MII by NMR Spectroscopy: Effects of Solution Environment on Helicityâ€,‡. Biochemistry, 1998, 37, 15621-15630.	2.5	58
43	Isolation and Characterization of Conopeptides by High-performance Liquid Chromatography Combined with Mass Spectrometry and Tandem Mass Spectrometry. , 1996, 10, 138-143.		37