
Sudipta Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6796584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable waste management using black soldier fly larva: a review. International Journal of Environmental Science and Technology, 2022, 19, 12701-12726.	1.8	24
2	Black soldier fly larvae for treatment and segregation of commingled municipal solid waste at different environmental conditions. Journal of Environmental Management, 2022, 302, 114060.	3.8	7
3	Synthesis and validation of polystyrene-based polyethylenimine composite for Cr(VI) removal from aqueous solution: Performance and mechanism. Journal of Environmental Chemical Engineering, 2022, 10, 107119.	3.3	8
4	Selective Proliferation of Antibiotic-Resistant Bacteria in the Biological Treatment Process at a Municipal Wastewater Treatment Plant in India. Journal of Environmental Engineering, ASCE, 2022, 148,	0.7	3
5	Detailed investigation of effective trace Cr(VI) removal mechanism by anion exchange resin with phenol–formaldehyde matrix. Journal of Industrial and Engineering Chemistry, 2022, 111, 147-154.	2.9	6
6	Comprehensive investigation of the mechanism for Cr(VI) removal from contaminated water using coconut husk as a biosorbent. Journal of Cleaner Production, 2021, 314, 128117.	4.6	19
7	Early strength development in concrete using preformed CSH nano crystals. Construction and Building Materials, 2020, 233, 117214.	3.2	50
8	Synthesis optimization of hybrid anion exchanger containing triethylamine functional groups and hydrated Fe(III) oxide nanoparticles for simultaneous nitrate and phosphate removal. Chemical Engineering Journal, 2020, 381, 122671.	6.6	42
9	Physicochemical Structure Analysis of Chitin Extracted from Pupa Exuviae and Dead Imago of Wild Black Soldier Fly (Hermetia illucens). Journal of Polymers and the Environment, 2020, 28, 445-457.	2.4	36
10	Trace Cr(VI) Removal: Evidence of Redox-Active Ion Exchange by a Weak-Base Anion Exchanger. Industrial & Engineering Chemistry Research, 2020, 59, 21187-21195.	1.8	15
11	Performance Evaluation and Substrate Removal Kinetics of an Anaerobic Packed-Bed Biofilm Reactor. International Journal of Environmental Research, 2019, 13, 223-233.	1.1	20
12	Spatial distribution of major bacterial species and different volatile fatty acids in a two-phase anaerobic biofilm reactor with PVA gel beads as bio-carrier. Preparative Biochemistry and Biotechnology, 2019, 49, 704-717.	1.0	4
13	Synergistic effect of mixed alcohols on esterification of decanoic acid with amberlyst 15 as catalyst. Environmental Progress and Sustainable Energy, 2019, 38, 13103.	1.3	3
14	Solid acid catalyst supported synthesis and fuel properties of ethyl decanoate. Fuel, 2018, 222, 98-104.	3.4	5
15	Esterification of decanoic acid with methanol using Amberlyst 15: Reaction kinetics. Chemical Engineering Communications, 2018, 205, 281-294.	1.5	17
16	Lead removal by a reusable gel cation exchange resin containing nano-scale zero valent iron. Chemical Engineering Journal, 2018, 331, 545-555.	6.6	52
17	Presence of fluoroquinolone resistance with persistent occurrence of gyrA gene mutations in a municipal wastewater treatment plant in India. Chemosphere, 2018, 211, 817-825.	4.2	22
18	Anaerobic treatment of wastewater using a two-stage packed-bed reactor containing polyvinyl alcohol gel beads as biofilm carrier. Journal of Environmental Chemical Engineering, 2017, 5, 1575-1585.	3.3	28

SUDIPTA SARKAR

#	Article	IF	CITATIONS
19	Breakthrough Technology or Breakthrough Solution: What Are We Really After?. Environmental Science & Technology, 2017, 51, 2529-2530.	4.6	11
20	Community-Based Approach for Mitigation of Arsenic Problems: Case Studies in West Bengal, India. , 2017, , 107-125.		0
21	Alleviation of toxic hexavalent chromium using indigenous aerobic bacteria isolated from contaminated tannery industry sites. Preparative Biochemistry and Biotechnology, 2016, 46, 517-523.	1.0	9
22	Sequencing Batch Reactor for Wastewater Treatment: Recent Advances. Current Pollution Reports, 2015, 1, 177-190.	3.1	81
23	Enhanced fluoride removal by hydroxyapatite-modified activated alumina. International Journal of Environmental Science and Technology, 2015, 12, 2809-2818.	1.8	42
24	Investigation on the long-term storage and fate of arsenic obtained as a treatment residual: A case study. Journal of Hazardous Materials, 2014, 271, 302-310.	6.5	20
25	Characterization of greywater in an Indian middle-class household and investigation of physicochemical treatment using electrocoagulation. Separation and Purification Technology, 2014, 130, 160-166.	3.9	77
26	Fluoride removal by a hybrid fluoride-selective adsorbent. Water Science and Technology: Water Supply, 2014, 14, 1133-1141.	1.0	4
27	Transforming the Arsenic Crisis into an Economic Enterprise. , 2013, , 299-319.		1
28	Sustainable Engineered Processes to Mitigate the Global Arsenic Crisis in Drinking Water: Challenges and Progress. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 497-517.	3.3	23
29	Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	380
30	Energy Recovery from Acid–Base Neutralization Process through pH-Sensitive Polymeric Ion Exchangers. Industrial & Engineering Chemistry Research, 2011, 50, 12293-12298.	1.8	12
31	Reversible Ion Exchange-Membrane (RIX-M) Process for Fouling Free and Energy Efficient Desalination of Seawater. ACS Symposium Series, 2011, , 285-301.	0.5	0
32	Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chemical Engineering Journal, 2011, 166, 923-931.	6.6	70
33	Assessment of low ABSPI among arsenic exposed and non-exposed populations: A pilot study. Bangladesh Medical Research Council Bulletin, 2010, 36, 23-26.	0.1	4
34	Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: Assessment of decade-long operation. Water Research, 2010, 44, 5813-5822.	5.3	71
35	The Donnan Membrane Principle: Opportunities for Sustainable Engineered Processes and Materials. Environmental Science & Technology, 2010, 44, 1161-1166.	4.6	188
36	A hybrid ion exchange-nanofiltration (HIX-NF) process for energy efficient desalination of brackish/seawater. Water Science and Technology: Water Supply, 2009, 9, 369-377.	1.0	8

SUDIPTA SARKAR

#	Article	IF	CITATIONS
37	A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: Process concept and laboratory evaluation. Journal of Membrane Science, 2008, 324, 76-84.	4.1	56
38	Arsenic Removal from Groundwater and Its Safe Containment in a Rural Environment: Validation of a Sustainable Approach. Environmental Science & amp; Technology, 2008, 42, 4268-4273.	4.6	153
39	Comment on "Arsenic Removal from Groundwater by Household Sand Filters: Comparative Field Study, Model Calculations, and Health Benefits― Environmental Science & Technology, 2007, 41, 1051-1052.	4.6	4
40	Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive and Functional Polymers, 2007, 67, 1599-1611.	2.0	104
41	Well-head arsenic removal units in remote villages of Indian subcontinent: Field results and performance evaluation. Water Research, 2005, 39, 2196-2206.	5.3	98
42	Effect of El Niæo observed over Indian continent from satellite-derived ozone data. Eos, 2000, 81, 409.	0.1	1
43	Synthesis, Characterization and Performance Validation of Hybrid Cation Exchanger Containing Hydrated Ferric Oxide Nanoparticles (HCIX-Fe) for Lead Removal from Battery Manufacturing Wastewater. Key Engineering Materials, 0, 718, 67-71.	0.4	2