
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6796553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Industrial Crops and Products, 2010, 32, 607-612.	2.5	167
2	Rheological characteristics of ground tire rubber-modified bitumens. Chemical Engineering Journal, 2002, 89, 53-61.	6.6	114
3	Influence of Soap Concentration and Oil Viscosity on the Rheology and Microstructure of Lubricating Greases. Industrial & Engineering Chemistry Research, 2006, 45, 1902-1910.	1.8	112
4	Thermorheological behaviour of a lithium lubricating grease. Tribology Letters, 2006, 23, 47-54.	1.2	92
5	Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydrate Polymers, 2011, 85, 705-714.	5.1	86
6	Relationship Among Microstructure, Rheology and Processing of a Lithium Lubricating Grease. Chemical Engineering Research and Design, 2005, 83, 1085-1092.	2.7	85
7	Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers, 2018, 179, 252-261.	5.1	80
8	Atomic Force Microscopy and Thermo-Rheological Characterisation of Lubricating Greases. Tribology Letters, 2011, 41, 463-470.	1.2	78
9	Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohydrate Polymers, 2011, 83, 151-158.	5.1	76
10	Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil. Green Chemistry, 2009, 11, 686.	4.6	74
11	Mixing rheometry for studying the manufacture of lubricating greases. Chemical Engineering Science, 2005, 60, 2409-2418.	1.9	71
12	Viscosity Modification of High-Oleic Sunflower Oil with Polymeric Additives for the Design of New Biolubricant Formulations. Environmental Science & Technology, 2009, 43, 2060-2065.	4.6	71
13	Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Industrial Crops and Products, 2012, 37, 500-507.	2.5	69
14	Natural and Synthetic Antioxidant Additives for Improving the Performance of New Biolubricant Formulations. Journal of Agricultural and Food Chemistry, 2011, 59, 12917-12924.	2.4	62
15	Development of new lubricating grease formulations using recycled LDPE as rheology modifier additive. European Polymer Journal, 2007, 43, 139-149.	2.6	55
16	Influence of processing on the rheological properties of tomato paste. Journal of the Science of Food and Agriculture, 2002, 82, 990-997.	1.7	52
17	Gel-Like Dispersions of HMDI-Cross-Linked Lignocellulosic Materials in Castor Oil: Toward Completely Renewable Lubricating Grease Formulations. ACS Sustainable Chemistry and Engineering, 2015, 3, 2130-2141.	3.2	51
18	Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils. Journal of Industrial and Engineering Chemistry, 2013, 19, 1289-1298.	2.9	50

#	Article	IF	CITATIONS
19	Linear and non-linear viscoelasticity of puddings for nutritional management of dysphagia. Food Hydrocolloids, 2011, 25, 586-593.	5.6	49
20	Modeling of the Non-Linear Rheological Behavior of a Lubricating Grease at Low-Shear Rates. Journal of Tribology, 2000, 122, 590-596.	1.0	46
21	Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydrate Polymers, 2013, 98, 152-160.	5.1	46
22	Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chemical Engineering Science, 2015, 134, 260-268.	1.9	44
23	Tribological, rheological, and microstructural characterization of oleogels based on EVA copolymer and vegetables oils for lubricant applications. Tribology International, 2015, 90, 426-434.	3.0	44
24	Tribological behaviour of novel chemically modified biopolymer-thickened lubricating greases investigated in a steel–steel rotating ball-on-three plates tribology cell. Tribology International, 2016, 94, 652-660.	3.0	44
25	Rheological Properties of Tomato Paste: Influence of the Addition of Tomato Slurry. Journal of Food Science, 2003, 68, 551-554.	1.5	43
26	Formulation of new biodegradable lubricating greases using ethylated cellulose pulp as thickener agent. Journal of Industrial and Engineering Chemistry, 2011, 17, 818-823.	2.9	40
27	Non-linear viscoelasticity modeling of tomato paste products. Food Research International, 2003, 36, 911-919.	2.9	38
28	Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chemical Engineering Research and Design, 2008, 86, 1073-1082.	2.7	38
29	AFM and SEM Assessment of Lubricating Grease Microstructures: Influence of Sample Preparation Protocol, Frictional Working Conditions and Composition. Tribology Letters, 2016, 63, 1.	1.2	38
30	Wall Slip Phenomena in Oil-in-Water Emulsions: Effect of Some Structural Parameters. Journal of Colloid and Interface Science, 2001, 241, 226-232.	5.0	37
31	Influence of soap/polymer concentration ratio on the rheological properties of lithium lubricating greases modified with virgin LDPE. Journal of Industrial and Engineering Chemistry, 2009, 15, 687-693.	2.9	36
32	Rheological and Tribological Characterization of a New Acylated Chitosan–Based Biodegradable Lubricating Grease: A Comparative Study with Traditional Lithium and Calcium Greases. Tribology Transactions, 2014, 57, 445-454.	1.1	36
33	Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics. European Polymer Journal, 2017, 89, 311-323.	2.6	36
34	Rheological and tribological approaches as a tool for the development of sustainable lubricating greases based on nano-montmorillonite and castor oil. Friction, 2021, 9, 415-428.	3.4	36
35	lsocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil. Molecules, 2013, 18, 6532-6549.	1.7	34
36	Molecular insights into the mechanisms of humidity-induced changes on the bulk performance of model castor oil derived polyurethane adhesives. European Polymer Journal, 2018, 101, 291-303.	2.6	34

#	Article	IF	CITATIONS
37	Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations. Materials Chemistry and Physics, 2011, 128, 530-538.	2.0	32
38	Valorization of Soda Lignin from Wheat Straw Solid-State Fermentation: Production of Oleogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 5198-5205.	3.2	32
39	Rheological Modification of Lubricating Greases with Recycled Polymers from Different Plastics Waste. Industrial & Engineering Chemistry Research, 2009, 48, 4136-4144.	1.8	31
40	Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose, 2013, 20, 495-507.	2.4	31
41	Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio. Journal of Industrial and Engineering Chemistry, 2011, 17, 705-711.	2.9	30
42	Evaluation of lignin-enriched side-streams from different biomass conversion processes as thickeners in bio-lubricant formulations. International Journal of Biological Macromolecules, 2020, 162, 1398-1413.	3.6	30
43	Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas Y Aceites, 2011, 62, 328-336.	0.3	29
44	Electrospun lignin-PVP nanofibers and their ability for structuring oil. International Journal of Biological Macromolecules, 2021, 180, 212-221.	3.6	29
45	The reaction of 2-amino-2-deoxyhexopyranoses with isocyanates. Synthesis of ureas and their transformation into heterocyclic derivatives Tetrahedron, 1993, 49, 2655-2675.	1.0	28
46	Oleins as a source of estolides for biolubricant applications. Grasas Y Aceites, 2010, 61, 171-174.	0.3	28
47	Preparation and Characterization of Gel-like Dispersions Based on Cellulosic Pulps and Castor Oil for Lubricant Applications. Industrial & Engineering Chemistry Research, 2011, 50, 5618-5627.	1.8	27
48	Modification of Alkali Lignin with Poly(Ethylene Glycol) Diglycidyl Ether to Be Used as a Thickener in Bio-Lubricant Formulations. Polymers, 2018, 10, 670.	2.0	27
49	Thermo-rheological and tribological properties of novel bio-lubricating greases thickened with epoxidized lignocellulosic materials. Journal of Industrial and Engineering Chemistry, 2019, 80, 626-632.	2.9	27
50	On the mechanism of formation of glycofurano[2,1-d]-imidazolidin-2-ones. Reaction of 2-amino-2-deoxyheptopyranoses with isocyanates Tetrahedron, 1993, 49, 2676-2690.	1.0	26
51	Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54, 115-121.	2.5	26
52	Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery. Polymers, 2018, 10, 392.	2.0	26
53	Structure-property relationships in solvent free adhesives derived from castor oil. Industrial Crops and Products, 2018, 121, 90-98.	2.5	26
54	Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers, 2022, 14, 881.	2.0	26

#	Article	IF	CITATIONS
55	Linear viscoelasticity of tomato sauce products: influence of previous tomato paste processing. European Food Research and Technology, 2002, 214, 394-399.	1.6	25
56	Optimization of the Methylation Conditions of Kraft Cellulose Pulp for Its Use As a Thickener Agent in Biodegradable Lubricating Greases. Industrial & Engineering Chemistry Research, 2009, 48, 6765-6771.	1.8	24
57	Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications. Polymers, 2014, 6, 1929-1947.	2.0	24
58	Rheological and TGA study of acylated chitosan gel-like dispersions in castor oil: Influence of acyl substituent and acylation protocol. Chemical Engineering Research and Design, 2015, 100, 170-178.	2.7	24
59	Condensation of 2-amino-2-deoxysugars with isothiocyanates. Synthesis of cis-1,2-fused glycopyrano heterocycles Tetrahedron, 1994, 50, 3273-3296.	1.0	23
60	Influence of molecular weight and free NCO content on the rheological properties of lithium lubricating greases modified with NCO-terminated prepolymers. European Polymer Journal, 2008, 44, 2262-2274.	2.6	22
61	Toward UV-Triggered Curing of Solvent-Free Polyurethane Adhesives Based on Castor Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 11032-11040.	3.2	22
62	Chemical, thermal and viscous characterization of high-oleic sunflower and olive pomace acid oils and derived estolides. Grasas Y Aceites, 2013, 64, 497-508.	0.3	21
63	Effect of an alkali treatment on the development of cellulose pulp-based gel-like dispersions in vegetable oil for use as lubricants. Tribology International, 2018, 123, 329-336.	3.0	21
64	Valorization of Kraft Lignin as Thickener in Castor Oil for Lubricant Applications. Journal of Renewable Materials, 2018, 6, 347-361.	1.1	21
65	Non-biaryl atropisomers derived from carbohydrates. Part 1. Stereoselective synthesis of 1-aryl-5-hydroxyimidazolidine-2-thiones and their transformation into imidazoline-2-thiones. Tetrahedron, 1999, 55, 4377-4400.	1.0	20
66	Evaluation of Thermal and Rheological Properties of Lubricating Greases Modified with Recycled LDPE. Tribology Transactions, 2012, 55, 518-528.	1.1	20
67	Influence of Eucalyptus globulus Kraft Pulping Severity on the Rheological Properties of Gel-like Cellulose Pulp Dispersions in Castor Oil. Industrial & Engineering Chemistry Research, 2012, 51, 9777-9782.	1.8	20
68	Effect of amorphous/recycled polypropylene ratio on thermo-mechanical properties of blends for lubricant applications. Polymer Testing, 2013, 32, 516-524.	2.3	20
69	Transient shear flow of model lithium lubricating greases. Mechanics of Time-Dependent Materials, 2009, 13, 63-80.	2.3	19
70	Formulation and processing of virgin and recycled polyolefin/oil blends for the development of lubricating greases. Journal of Industrial and Engineering Chemistry, 2013, 19, 580-588.	2.9	19
71	Rheology of epoxidized cellulose pulp gel-like dispersions in castor oil: Influence of epoxidation degree and the epoxide chemical structure. Carbohydrate Polymers, 2018, 199, 563-571.	5.1	19
72	Tribological study of epoxide-functionalized alkali lignin-based gel-like biogreases. Tribology International, 2020, 146, 106231.	3.0	19

#	Article	IF	CITATIONS
73	Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviors. Composites Science and Technology, 2021, 203, 108602.	3.8	19
74	Use of Reactive Diisocyanate-Terminated Polymers as Rheology Modifiers of Lubricating Greases. Industrial & Engineering Chemistry Research, 2006, 45, 4001-4010.	1.8	18
75	Rheology and microstructure of lithium lubricating greases modified with a reactive diisocyanate-terminated polymer: Influence of polymer addition protocol. Chemical Engineering and Processing: Process Intensification, 2008, 47, 528-538.	1.8	18
76	Viscosity modification of highâ€oleic sunflower and castor oils with acid oilsâ€derived estolides for lubricant applications. European Journal of Lipid Science and Technology, 2013, 115, 1173-1182.	1.0	18
77	Influence of epoxidation conditions on the rheological properties of gel-like dispersions of epoxidized kraft lignin in castor oil. Holzforschung, 2017, 71, 777-784.	0.9	18
78	Influence of solid-state fermentation with Streptomyces on the ability of wheat and barley straws to thicken castor oil for lubricating purposes. Industrial Crops and Products, 2019, 140, 111625.	2.5	17
79	On the Steady-State Flow and Yielding Behaviour of Lubricating Greases. Fluids, 2019, 4, 6.	0.8	17
80	Rheology and adhesion performance of adhesives formulated with lignins from agricultural waste straws subjected to solid-state fermentation. Industrial Crops and Products, 2021, 171, 113876.	2.5	17
81	Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. International Journal of Biological Macromolecules, 2022, 214, 554-567.	3.6	17
82	A novel regio- and highly stereoselective anomeric deacetylation of 2-aminosugar derivatives. Tetrahedron Letters, 1993, 34, 1359-1362.	0.7	16
83	Eco-Friendly Oleogels from Functionalized Kraft Lignin with Laccase SilA from <i>Streptomyces ipomoeae</i> : An Opportunity to Replace Commercial Lubricants. ACS Sustainable Chemistry and Engineering, 2021, 9, 4611-4616.	3.2	16
84	Recycled and virgin LDPE as rheology modifiers of lithium lubricating greases: A comparative study. Polymer Engineering and Science, 2008, 48, 1112-1119.	1.5	15
85	Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes. Applied Clay Science, 2014, 87, 265-271.	2.6	15
86	Tandem ATRP/Diels–Alder synthesis of polyHEMA-based hydrogels. Polymer Chemistry, 2014, 5, 5391-5402.	1.9	15
87	Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels. Polymers, 2021, 13, 2206.	2.0	15
88	Impact of natural sources-derived antioxidants on the oxidative stability and rheological properties of castor oil based-lubricating greases. Industrial Crops and Products, 2016, 87, 297-303.	2.5	14
89	Implementation of a novel continuous solid/liquid mixing accessory for 3D printing of dysphagia-oriented thickened fluids. Food Hydrocolloids, 2021, 120, 106900.	5.6	14
90	Non-biaryl atropisomers derived from carbohydrates. Part 2. Atropisomeric behavior of monocyclic and bicyclic imidazolidine-2-ones and 2-thiones. Tetrahedron, 1999, 55, 4401-4426.	1.0	13

#	Article	IF	CITATIONS
91	Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. International Journal of Biological Macromolecules, 2022, 195, 412-423.	3.6	13
92	Green and facile procedure for the preparation of liquid and gel-like polyurethanes based on castor oil and lignin: Effect of processing conditions on the rheological properties. Journal of Cleaner Production, 2020, 277, 123367.	4.6	12
93	Cellulose Pulp- and Castor Oil-Based Polyurethanes for Lubricating Applications: Influence of Streptomyces Action on Barley and Wheat Straws. Polymers, 2020, 12, 2822.	2.0	12
94	Design of lubricating grease formulations using recycled polypropylene from postconsumer films as thickener agent. Journal of Applied Polymer Science, 2013, 127, 1369-1376.	1.3	11
95	Synthesis and characterization of isocyanateâ€functionalized PVAâ€based polymers with applications as new additives in lubricant formulations. Journal of Applied Polymer Science, 2012, 125, 3259-3267.	1.3	10
96	Assessment of Sustainability of Bio Treated Lignocellulose-Based Oleogels. Polymers, 2021, 13, 267.	2.0	10
97	Linear and nonlinear viscoelasticity of oleogels based on vegetable oil and ethylene vinyl acetate copolymer/isotactic polypropylene blends. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
98	The effect of recycled polymer addition on the thermorheological behavior of modified lubricating greases. Polymer Engineering and Science, 2013, 53, 818-826.	1.5	6
99	Thickening Castor Oil with a Lignin-Enriched Fraction from Sugarcane Bagasse Waste via Epoxidation: A Rheological and Hydrodynamic Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 10503-10512.	3.2	6
100	Droplet-size distribution and stability of commercial injectable lipid emulsions containing fish oil. American Journal of Health-System Pharmacy, 2012, 69, 1332-1335.	0.5	5
101	Influence of some processing variables on the rheological properties of lithium lubricating greases modified with recycled polymers. International Journal of Materials and Product Technology, 2012, 43, 184.	0.1	4
102	Influence of Base Oil Polarity on the Transient Shear Flow of Biodegradable Lubricating Greases. Lubricants, 2015, 3, 611-627.	1.2	4
103	Unexpected Selectivity in the Functionalization of Neat Castor Oil under Benign Catalyst-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 7212-7215.	3.2	4
104	Populus alba L., an Autochthonous Species of Spain: A Source for Cellulose Nanofibers by Chemical Pretreatment. Polymers, 2022, 14, 68.	2.0	4
105	Rheology of lubricating greases modified with reactive NCOâ€ŧerminated polymeric additives. Journal of Applied Polymer Science, 2010, 118, 693-704.	1.3	2
106	Structuring natural deep eutectic solvents with epoxidised lignin-enriched residues: a green alternative to petroleum-based thickened formulations. Journal of Molecular Liquids, 2022, 360, 119433.	2.3	1
107	Processing and Formulation of Lithium Lubricating Greases. AIP Conference Proceedings, 2006, , .	0.3	0
108	Transient Shear Flow of Model Lithium Lubricating Greases. AIP Conference Proceedings, 2008, , .	0.3	0