
Michael D Purugganan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6796528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems. Plant Cell, 2022, 34, 759-783.	3.1	19
2	Vavilovâ \in Ms law and phenotypes across species. Nature Reviews Genetics, 2022, , .	7.7	1
3	Patterns of Volatile Diversity Yield Insights Into the Genetics and Biochemistry of the Date Palm Fruit Volatilome. Frontiers in Plant Science, 2022, 13, 853651.	1.7	6
4	What is domestication?. Trends in Ecology and Evolution, 2022, 37, 663-671.	4.2	40
5	The influence of genetic architecture on responses to selection under drought in rice. Evolutionary Applications, 2022, 15, 1670-1690.	1.5	5
6	Molecular genetic variation of animals and plants under domestication. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
7	Rapid evolutionary changes in gene expression in response to climate fluctuations. Molecular Ecology, 2021, 30, 193-206.	2.0	27
8	Natural variation in plant telomere length is associated with flowering time. Plant Cell, 2021, 33, 1118-1134.	3.1	29
9	The genomes of ancient date palms germinated from 2,000 y old seeds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
10	Advancing crop genomics from lab to field. Nature Genetics, 2021, 53, 595-601.	9.4	47
11	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	3.5	14
12	Genome Analysis Traces Regional Dispersal of Rice in Taiwan and Southeast Asia. Molecular Biology and Evolution, 2021, 38, 4832-4846.	3.5	16
13	Ancestral polymorphisms shape the adaptive radiation of <i>Metrosideros</i> across the Hawaiian Islands. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
14	Insulators in Plants: Progress and Open Questions. Genes, 2021, 12, 1422.	1.0	6
15	Divergent Selection and Primary Gene Flow Shape Incipient Speciation of a Riparian Tree on Hawaii Island. Molecular Biology and Evolution, 2020, 37, 695-710.	3.5	21
16	The chloroplast genome of the pincushion cactus Mammilllaria haageana subsp. san-angelensis, a Mexican endangered species. Mitochondrial DNA Part B: Resources, 2020, 5, 2038-2039.	0.2	3
17	Genomic history and ecology of the geographic spread of rice. Nature Plants, 2020, 6, 492-502.	4.7	143
18	Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nature Communications, 2020, 11, 2819.	5.8	62

#	Article	IF	CITATIONS
19	Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biology, 2020, 21, 21.	3.8	73
20	An inferred fitness consequence map of the rice genome. Nature Plants, 2020, 6, 119-130.	4.7	20
21	The strength and pattern of natural selection on gene expression in rice. Nature, 2020, 578, 572-576.	13.7	92
22	Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genetics, 2020, 16, e1008571.	1.5	112
23	Evolutionary Insights into the Nature of Plant Domestication. Current Biology, 2019, 29, R705-R714.	1.8	204
24	Genome-wide association mapping of date palm fruit traits. Nature Communications, 2019, 10, 4680.	5.8	75
25	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	9.4	60
26	The complex geography of domestication of the African rice Oryza glaberrima. PLoS Genetics, 2019, 15, e1007414.	1.5	30
27	Copy Number Variation in Domestication. Trends in Plant Science, 2019, 24, 352-365.	4.3	131
28	Evolutionary and ecological functional genomics, from lab to the wild. Plant Journal, 2019, 97, 40-55.	2.8	39
29	Cross-species hybridization and the origin of North African date palms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1651-1658.	3.3	95
30	Evolutionary Epigenomics of Retrotransposon-Mediated Methylation Spreading in Rice. Molecular Biology and Evolution, 2018, 35, 365-382.	3.5	44
31	Multiple Origin but Single Domestication Led to <i>Oryza sativa</i> . G3: Genes, Genomes, Genetics, 2018, 8, 797-803.	0.8	68
32	Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. Frontiers in Plant Science, 2018, 9, 156.	1.7	95
33	The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, 2018, 19, 505-517.	7.7	251
34	The rice paradox: Multiple origins but single domestication in Asian rice. Molecular Biology and Evolution, 2017, 34, msx049.	3.5	178
35	Metaâ€analysis and metaâ€regression of transcriptomic responses to water stress in Arabidopsis. Plant Journal, 2016, 85, 548-560.	2.8	64
36	Domestication history and geographical adaptation inferred from a SNP map of African rice. Nature Genetics, 2016, 48, 1083-1088.	9.4	158

#	Article	IF	CITATIONS
37	Cryptic Genetic Variation for Arabidopsis thaliana Seed Germination Speed in a Novel Salt Stress Environment. G3: Genes, Genomes, Genetics, 2016, 6, 3129-3138.	0.8	24
38	Systems genetics of plant adaptation to environmental stresses. American Journal of Botany, 2016, 103, 2019-2021.	0.8	6
39	EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments. Plant Cell, 2016, 28, 2365-2384.	3.1	139
40	Extreme <scp>QTL</scp> mapping of germination speed in <i>Arabidopsis thaliana</i> . Molecular Ecology, 2016, 25, 4177-4196.	2.0	30
41	Tracing ancestor rice of Suriname Maroons back to its African origin. Nature Plants, 2016, 2, 16149.	4.7	31
42	Developing maps of fitness consequences for plant genomes. Current Opinion in Plant Biology, 2016, 30, 101-107.	3.5	13
43	Comprehensive phenotypic analysis of rice (<i>Oryza sativa</i>) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54.	2.6	77
44	Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions. ELife, 2015, 4, .	2.8	43
45	Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2015, 27, 2353-2369.	3.1	92
46	Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nature Communications, 2015, 6, 8824.	5.8	148
47	Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS. Nature Communications, 2014, 5, 3651.	5.8	67
48	Possible Loss of the Chloroplast Genome in the Parasitic Flowering Plant Rafflesia lagascae (Rafflesiaceae). Molecular Biology and Evolution, 2014, 31, 793-803.	3.5	183
49	Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6139-6146.	3.3	594
50	Storytelling and story testing in domestication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6159-6164.	3.3	96
51	Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6147-6152.	3.3	325
52	Population Genomics of Plant Species. Advances in Botanical Research, 2014, 69, 311-334.	0.5	1
53	Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum. BMC Genomics, 2014, 15, 616.	1.2	4
54	An evolutionary genomic tale of two rice species. Nature Genetics, 2014, 46, 931-932.	9.4	20

#	Article	IF	CITATIONS
55	Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 2013, 14, 840-852.	7.7	857
56	Introduction to Theme "Genomics in Ecology, Evolution, and Systematics― Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 1-4.	3.8	7
57	Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics, 2013, 14, 579.	1.2	186
58	Regional Modulation of a Stochastically Expressed Factor Determines Photoreceptor Subtypes in the Drosophila Retina. Developmental Cell, 2013, 25, 93-105.	3.1	44
59	Integration of responses within and across <i>Arabidopsis</i> natural accessions uncovers loci controlling root systems architecture. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15133-15138.	3.3	93
60	Genome-Wide Patterns of Arabidopsis Gene Expression in Nature. PLoS Genetics, 2012, 8, e1002662.	1.5	110
61	Natural Selection in Gene-Dense Regions Shapes the Genomic Pattern of Polymorphism in Wild and Domesticated Rice. Molecular Biology and Evolution, 2012, 29, 675-687.	3.5	63
62	Longitudinal trends in climate drive flowering time clines in North American <i>Arabidopsis thaliana</i> . Ecology and Evolution, 2012, 2, 1162-1180.	0.8	65
63	Phylogeography of Asian wild rice, <i>Oryza rufipogon</i> : a genomeâ€wide view. Molecular Ecology, 2012, 21, 4593-4604.	2.0	79
64	Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in <i>Arabidopsis thaliana</i> . Ecology Letters, 2012, 15, 769-777.	3.0	115
65	Cultivation as slow evolutionary entanglement: comparative data on rate and sequence of domestication. Vegetation History and Archaeobotany, 2012, 21, 131-145.	1.0	103
66	ARCHAEOLOGICAL DATA REVEAL SLOW RATES OF EVOLUTION DURING PLANT DOMESTICATION. Evolution; International Journal of Organic Evolution, 2011, 65, 171-183.	1.1	160
67	The cooperative amoeba: Dictyostelium as a model for social evolution. Trends in Genetics, 2011, 27, 48-54.	2.9	74
68	Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8351-8356.	3.3	422
69	Levels and Patterns of Nucleotide Variation in Domestication QTL Regions on Rice Chromosome 3 Suggest Lineage-Specific Selection. PLoS ONE, 2011, 6, e20670.	1.1	5
70	The evolution of rice: molecular vignettes on its origins and spread. Archaeological and Anthropological Sciences, 2010, 2, 61-68.	0.7	11
71	BIO. Evolution & Development, 2010, 12, 3-4.	1.1	0
72	Migration, isolation and hybridization in island crop populations: the case of Madagascar rice. Molecular Ecology, 2010, 19, 4892-4905.	2.0	47

#	Article	IF	CITATIONS
73	Variation, Sex, and Social Cooperation: Molecular Population Genetics of the Social Amoeba Dictyostelium discoideum. PLoS Genetics, 2010, 6, e1001013.	1.5	67
74	A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics, 2009, 5, e1000551.	1.5	554
75	Population Genomics of the Arabidopsis thaliana Flowering Time Gene Network. Molecular Biology and Evolution, 2009, 26, 2475-2486.	3.5	66
76	The nature of selection during plant domestication. Nature, 2009, 457, 843-848.	13.7	818
77	Candidate Gene Association Mapping of Arabidopsis Flowering Time. Genetics, 2009, 183, 325-335.	1.2	175
78	Functional and geographical differentiation of candidate balanced polymorphisms in <i>Arabidopsis thaliana</i> . Molecular Ecology, 2009, 18, 2844-2855.	2.0	8
79	Independent origins of selfâ€compatibility in <i>Arabidopsis thaliana</i> . Molecular Ecology, 2008, 17, 704-714.	2.0	90
80	A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science, 2008, 321, 836-838.	6.0	330
81	The evolution of plant genomes—scaling up from a population perspective. Current Opinion in Genetics and Development, 2008, 18, 565-570.	1.5	26
82	MicroRNAs in plants. Plant Signaling and Behavior, 2008, 3, 829-830.	1.2	13
83	Sequence Variation of MicroRNAs and Their Binding Sites in Arabidopsis Â. Plant Physiology, 2008, 146, 1974-1982.	2.3	80
84	Complex Rearrangements Lead to Novel Chimeric Gene Fusion Polymorphisms at the Arabidopsis thaliana MAF2-5 Flowering Time Gene Cluster. Molecular Biology and Evolution, 2008, 26, 699-711.	3.5	42
85	The Extent of Linkage Disequilibrium in Rice (<i>Oryza sativa</i> L.). Genetics, 2007, 177, 2223-2232.	1.2	331
86	Genome-Wide Patterns of Nucleotide Polymorphism in Domesticated Rice. PLoS Genetics, 2007, 3, e163.	1.5	406
87	The Genetic Architecture of Shoot Branching in Arabidopsis thaliana: A Comparative Assessment of Candidate Gene Associations vs. Quantitative Trait Locus Mapping. Genetics, 2007, 176, 1223-1236.	1.2	53
88	Genetics of microenvironmental canalization in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13717-13722.	3.3	94
89	Molecular Phylogeography of Domesticated Barley Traces Expansion of Agriculture in the Old World. Genetics, 2007, 177, 1765-1776.	1.2	104
90	Fitness Effects Associated with the Major Flowering Time Gene FRIGIDA in Arabidopsis thaliana in the Field. American Naturalist, 2007, 169, E141-E157.	1.0	151

#	Article	IF	CITATIONS
91	Evolutionary patterns in the antR-Cor gene in the dwarf dogwood complex (Cornus, Cornaceae). Genetica, 2007, 130, 19-34.	0.5	10
92	The Molecular Evolutionary Ecology of Plant Development: Flowering Time in Arabidopsis thaliana. Advances in Botanical Research, 2006, , 507-526.	0.5	27
93	Comparative Sequencing of Plant Genomes: Choices to Make. Plant Cell, 2006, 18, 1100-1104.	3.1	49
94	Genomic Variation in Rice: Genesis of Highly Polymorphic Linkage Blocks during Domestication. PLoS Genetics, 2006, 2, e199.	1.5	57
95	Selection Under Domestication: Evidence for a Sweep in the Rice Waxy Genomic Region. Genetics, 2006, 173, 975-983.	1.2	246
96	The molecular genetic basis of plant adaptation. American Journal of Botany, 2006, 93, 953-962.	0.8	48
97	Molecular Population Genetics and Phenotypic Diversification of Two Populations of the Thermophilic Cyanobacterium Mastigocladus laminosus. Applied and Environmental Microbiology, 2006, 72, 2793-2800.	1.4	61
98	The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology, 2005, 8, 122-128.	3.5	470
99	Vernalization sensitivity in <i>Arabidopsis thaliana</i> (Brassicaceae): the effects of latitude and FLC variation. American Journal of Botany, 2005, 92, 1701-1707.	0.8	56
100	Molecular Population Genetics of Redundant Floral-Regulatory Genes in Arabidopsis thaliana. Molecular Biology and Evolution, 2005, 22, 91-103.	3.5	54
101	Comparative Plant Genomics. Frontiers and Prospects. Plant Physiology, 2005, 138, 545-547.	2.3	33
102	High-Diversity Genes in the Arabidopsis GenomeSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. DQ132063, DQ132370 Genetics, 2005, 170, 1897-1911.	1.2	35
103	Evolutionary and Ecological Genomics of Arabidopsis. Plant Physiology, 2005, 138, 578-584.	2.3	58
104	Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15670-15675.	3.3	336
105	The evolution of plant development. American Journal of Botany, 2004, 91, 1726-1741.	0.8	140
106	A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4712-4717.	3.3	458
107	Linkage Disequilibrium Mapping of Arabidopsis CRY2 Flowering Time AllelesSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY576055, AY576271 Genetics, 2004, 167, 1361-1369.	1.2	106
108	The evolution of molecular genetic pathways and networks. BioEssays, 2004, 26, 479-484.	1.2	116

#	Article	IF	CITATIONS
109	Heterogeneous evolution of the Myc-like Anthocyanin regulatory gene and its phylogenetic utility in Cornus L. (Cornaceae). Molecular Phylogenetics and Evolution, 2004, 33, 580-594.	1.2	37
110	Epialleles via DNA methylation: consequences for plant evolution. Trends in Ecology and Evolution, 2004, 19, 309-314.	4.2	187
111	Patterns of nucleotide variation in homoeologous regulatory genes in the allotetraploid Hawaiian silversword alliance (Asteraceae). Molecular Ecology, 2003, 12, 1301-1313.	2.0	31
112	Merging Ecology, Molecular Evolution, and Functional Genetics. Molecular Ecology, 2003, 12, 1109-1112.	2.0	30
113	The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15682-15687.	3.3	447
114	Selection on Rapidly Evolving Proteins in the Arabidopsis Genome. Genetics, 2003, 163, 723-733.	1.2	65
115	Molecular Population Genetics of the Arabidopsis <i>CLAVATA2</i> Region: The Genomic Scale of Variation and Selection in a Selfing Species. Genetics, 2003, 163, 1083-1095.	1.2	44
116	Heterogeneous Selection at Specific Loci in Natural Environments in <i>Arabidopsis thaliana</i> . Genetics, 2003, 165, 321-329.	1.2	119
117	Genotype-Environment Interactions at Quantitative Trait Loci Affecting Inflorescence Development in <i>Arabidopsis thaliana</i> . Genetics, 2003, 165, 353-365.	1.2	151
118	Intron and Polypeptide Evolution of Conserved NPA to NPA Motif Regions in Plant Aquaporins. Journal of the American Society for Horticultural Science, 2003, 128, 591-597.	0.5	4
119	GAI Homologues in the Hawaiian Silversword Alliance (Asteraceae-Madiinae): Molecular Evolution of Growth Regulators in a Rapidly Diversifying Plant Lineage. Molecular Biology and Evolution, 2002, 19, 1563-1574.	3.5	31
120	Linking molecular insight and ecological research. Trends in Ecology and Evolution, 2002, 17, 409-414.	4.2	83
121	The genetics of plant morphological evolution. Current Opinion in Plant Biology, 2002, 5, 49-55.	3.5	44
122	The cost of inbreeding in Arabidopsis. Nature, 2002, 416, 531-534.	13.7	304
123	Quantitative Trait Loci for Inflorescence Development in <i>Arabidopsis thaliana</i> . Genetics, 2002, 160, 1133-1151.	1.2	124
124	Contrasting Evolutionary Forces in the <i>Arabidopsis thaliana</i> Floral Developmental Pathway. Genetics, 2002, 160, 1641-1650.	1.2	95
125	Molecular Evidence on the Origin and Evolution of Glutinous Rice. Genetics, 2002, 162, 941-950.	1.2	181
126	Novel Loci Control Variation in Reproductive Timing in <i>Arabidopsis thaliana</i> in Natural Environments. Genetics, 2002, 162, 1875-1884.	1.2	144

#	Article	IF	CITATIONS
127	The molecular population genetics of regulatory genes. Molecular Ecology, 2000, 9, 1451-1461.	2.0	74
128	Interspecific evolution in plant microsatellite structure. Gene, 2000, 241, 101-105.	1.0	11
129	Molecular evolution of flower development. Trends in Ecology and Evolution, 2000, 15, 144-149.	4.2	64
130	Variation and Selection at the <i>CAULIFLOWER</i> Floral Homeotic Gene Accompanying the Evolution of Domesticated <i>Brassica oleracea</i> . Genetics, 2000, 155, 855-862.	1.2	93
131	Quantitative Trait Loci for Floral Morphology in <i>Arabidopsis thaliana</i> . Genetics, 2000, 156, 1379-1392.	1.2	96
132	Molecular Population Genetics of Floral Homeotic Loci: Departures From the Equilibrium-Neutral Model at the APETALA3 and PISTILLATA Genes of Arabidopsis thaliana. Genetics, 1999, 151, 839-848.	1.2	106
133	The molecular evolution of development. BioEssays, 1998, 20, 700-711.	1.2	84
134	The MADS-box floral homeotic gene lineages predate the origin of seed plants: Phylogenetic and molecular clock estimates. Journal of Molecular Evolution, 1997, 45, 392-396.	0.8	104
135	The Evolution of the Conserved ATPase Domain (CAD): Reconstructing the History of an Ancient Protein Module. Journal of Molecular Evolution, 1997, 45, 549-563.	0.8	41
136	Evolution of development: molecules, mechanisms and phylogenetics. Trends in Ecology and Evolution, 1996, 11, 5-7.	4.2	2
137	Scale-invariant spatial patterns in genome organization. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 175, 252-256.	0.9	2
138	Transposable elements as introns: evolutionary connections. Trends in Ecology and Evolution, 1993, 8, 239-243.	4.2	20
139	Alternative Splicing Induced by Insertion of Retrotransposons into the Maize waxy Gene. Plant Cell, 1992, 4, 811.	3.1	36
140	Perspectives on Ecological and Evolutionary Systems Biology. , 0, , 331-349.		8