

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/679649/publications.pdf Version: 2024-02-01

lig Luu

#	Article	IF	CITATIONS
1	Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chemical Society Reviews, 2022, 51, 71-127.	18.7	45
2	Simultaneous Enhancement of the Long-Wavelength NIR-II Brightness and Photothermal Performance of Semiconducting Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 8705-8717.	4.0	20
3	Multiple stimuli-responsive nanosystem for potent, ROS-amplifying, chemo-sonodynamic antitumor therapy. Bioactive Materials, 2022, 15, 355-371.	8.6	21
4	Simultaneously Detecting Monoamine Oxidase A and B in Disease Cell/Tissue Samples Using Paper-Based Devices. ACS Applied Bio Materials, 2021, 4, 1395-1402.	2.3	5
5	Immune remodeling triggered by photothermal therapy with semiconducting polymer nanoparticles in combination with chemotherapy to inhibit metastatic cancers. Journal of Materials Chemistry B, 2021, 9, 2613-2622.	2.9	13
6	NIRâ€II Absorbing Semiconducting Polymerâ€Triggered Geneâ€Directed Enzyme Prodrug Therapy for Cancer Treatment. Small, 2021, 17, e2100501.	5.2	15
7	Hot-band absorption of indocyanine green for advanced anti-stokes fluorescence bioimaging. Light: Science and Applications, 2021, 10, 182.	7.7	13
8	Acceptor engineering of small-molecule fluorophores for NIR-II fluorescence and photoacoustic imaging. Journal of Materials Chemistry B, 2021, 9, 9951-9960.	2.9	20
9	NIRâ€II Light Activated Photosensitizer with Aggregationâ€Induced Emission for Precise and Efficient Twoâ€Photon Photodynamic Cancer Cell Ablation. Advanced Functional Materials, 2020, 30, 2002546.	7.8	74
10	Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano, 2020, 14, 2509-2521.	7.3	220
11	<i>In vivo</i> assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics, 2020, 10, 4694-4704.	4.6	52
12	<p>An organic NIR-II nanofluorophore with aggregation-induced emission characteristics for in vivo fluorescence imaging</p> . International Journal of Nanomedicine, 2019, Volume 14, 3571-3582.	3.3	42
13	NIRâ€llâ€Excited Intravital Twoâ€Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIRâ€l AIE Luminogen. Advanced Materials, 2019, 31, e1904447.	11.1	93
14	NIRâ€II Excitable Conjugated Polymer Dots with Bright NIRâ€I Emission for Deep In Vivo Twoâ€Photon Brain Imaging Through Intact Skull. Advanced Functional Materials, 2019, 29, 1808365.	7.8	80
15	In Vivo Imaging: Molecular Engineering of an Organic NIRâ€II Fluorophore with Aggregationâ€Induced Emission Characteristics for In Vivo Imaging (Small 20/2019). Small, 2019, 15, 1970106.	5.2	7
16	A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. Nanoscale, 2019, 11, 7754-7760.	2.8	42
17	Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta, 2019, 199, 573-580.	2.9	30
18	Molecular Engineering of an Organic NIRâ€II Fluorophore with Aggregationâ€Induced Emission Characteristics for In Vivo Imaging. Small, 2019, 15, e1805549.	5.2	96

Jie Liu

#	Article	IF	CITATIONS
19	Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale, 2018, 10, 5869-5874.	2.8	32
20	Organic nanoparticles with ultrahigh quantum yield and aggregation-induced emission characteristics for cellular imaging and real-time two-photon lung vasculature imaging. Journal of Materials Chemistry B, 2018, 6, 2630-2636.	2.9	19
21	Molecular Engineering of Photoacoustic Performance by Chalcogenide Variation in Conjugated Polymer Nanoparticles for Brain Vascular Imaging. Small, 2018, 14, e1703732.	5.2	37
22	Hydrogen peroxide degradable conjugated polymer nanoparticles for fluorescence and photoacoustic bimodal imaging. Chemical Communications, 2018, 54, 2518-2521.	2.2	17
23	Artemisinin and AlEgen Conjugate for Mitochondria-Targeted and Image-Guided Chemo- and Photodynamic Cancer Cell Ablation. ACS Applied Materials & Interfaces, 2018, 10, 11546-11553.	4.0	93
24	Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2018, 10, 14850-14856.	4.0	46
25	Rational Design of a Red-Emissive Fluorophore with AIE and ESIPT Characteristics and Its Application in Light-Up Sensing of Esterase. Analytical Chemistry, 2017, 89, 3162-3168.	3.2	143
26	Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chemical Science, 2017, 8, 2782-2789.	3.7	159
27	Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Advanced Science, 2017, 4, 1600407.	5.6	40
28	Red and near infrared fluorescent conjugated polyelectrolytes for biomedical applications. Journal of Polymer Science Part A, 2017, 55, 519-532.	2.5	10
29	Amplification of near-infrared fluorescence in semiconducting polymer nanoprobe for grasping the behaviors of systemically administered endothelial cells in ischemia treatment. Biomaterials, 2017, 143, 109-119.	5.7	16
30	Multifunctional Conjugated Polymer Nanoparticles for Imageâ€Guided Photodynamic and Photothermal Therapy. Small, 2017, 13, 1602807.	5.2	147
31	Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement. Journal of Materials Chemistry B, 2016, 4, 4690-4695.	2.9	77
32	Farâ€Red/Nearâ€Infrared Conjugated Polymer Nanoparticles for Longâ€Term In Situ Monitoring of Liver Tumor Growth. Advanced Science, 2015, 2, 1500008.	5.6	50
33	Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release. Nanoscale, 2015, 7, 3067-3076.	2.8	92
34	Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy. Journal of Materials Chemistry B, 2015, 3, 1135-1141.	2.9	26
35	Biocompatible Conjugated Polymer Nanoparticles for Efficient Photothermal Tumor Therapy. Small, 2015, 11, 1603-1610.	5.2	168
36	Bright Singleâ€Chain Conjugated Polymer Dots Embedded Nanoparticles for Longâ€Term Cell Tracing and Imaging. Small, 2014, 10, 1212-1219.	5.2	49

Jie Liu

#	Article	IF	CITATIONS
37	Bright Quantumâ€Dotâ€Sized Singleâ€Chain Conjugated Polyelectrolyte Nanoparticles: Synthesis, Characterization and Application for Specific Extracellular Labeling and Imaging. Small, 2014, 10, 3110-3118.	5.2	23
38	Tumorâ€Responsive Fluorescent Lightâ€up Probe Based on a Gold Nanoparticle/Conjugated Polyelectrolyte Hybrid. Small, 2014, 10, 1967-1975.	5.2	40
39	Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polymer Chemistry, 2014, 5, 2854-2862.	1.9	93
40	Reversible photoswitching conjugated polymer nanoparticles for cell and ex vivo tumor imaging. Nanoscale, 2014, 6, 4141-4147.	2.8	55
41	Cell imaging using red fluorescent light-up probes based on an environment-sensitive fluorogen with intramolecular charge transfer characteristics. Chemical Communications, 2014, 50, 9497.	2.2	19
42	Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials, 2014, 35, 8669-8677.	5.7	96
43	Micelle/Silica Co-protected Conjugated Polymer Nanoparticles for Two-Photon Excited Brain Vascular Imaging. Chemistry of Materials, 2014, 26, 1874-1880.	3.2	65
44	Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging. Polymer Chemistry, 2013, 4, 1517-1524.	1.9	19
45	Ultrabright Organic Dots with Aggregationâ€Induced Emission Characteristics for Realâ€Time Twoâ€Photon Intravital Vasculature Imaging. Advanced Materials, 2013, 25, 6083-6088.	11.1	255
46	A general approach to prepare conjugated polymer dot embedded silica nanoparticles with a SiO2@CP@SiO2 structure for targeted HER2-positive cellular imaging. Nanoscale, 2013, 5, 8593.	2.8	33
47	Emerging applications of conjugated polymers in molecular imaging. Physical Chemistry Chemical Physics, 2013, 15, 17006.	1.3	34
48	A bright far-red and near-infrared fluorescent conjugated polyelectrolyte with quantum yield reaching 25%. Chemical Communications, 2013, 49, 1491-1493.	2.2	51
49	Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. Polymer Chemistry, 2013, 4, 4326.	1.9	54
50	A water-soluble conjugated polymer brush with multihydroxy dendritic side chains. Polymer Chemistry, 2013, 4, 5243.	1.9	27
51	Bright Farâ€Red/Nearâ€Infrared Conjugated Polymer Nanoparticles for In Vivo Bioimaging. Small, 2013, 9, 3093-3102.	5.2	106
52	A Facile Strategy toward Conjugated Polyelectrolyte with Oligopeptide as Pendants for Biological Applications. ACS Applied Materials & Interfaces, 2013, 5, 4511-4515.	4.0	18
53	Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. Chemistry of Materials, 2013, 25, 4181-4187.	3.2	115
54	Highly efficient green-emitting electrophosphorescent hyperbranched polymers using a bipolar carbazole-3,6-diyl-co-2,8-octyldibenzothiophene-S,S-dioxide-3,7-diyl unit as the branch. RSC Advances, 2012, 2, 689-696.	1.7	43

Jie Liu

#	Article	IF	CITATIONS
55	Highly emissive PEG-encapsulated conjugated polymer nanoparticles. Nanoscale, 2012, 4, 5694.	2.8	30
56	PEGylated conjugated polyelectrolytes containing 2,1,3-benzoxadiazole units for targeted cell imaging. Polymer Chemistry, 2012, 3, 1567.	1.9	55
57	Facile Synthesis of Stable and Water-Dispersible Multihydroxy Conjugated Polymer Nanoparticles with Tunable Size by Dendritic Cross-Linking. ACS Macro Letters, 2012, 1, 927-932.	2.3	41
58	Novel Spectrally Stable Saturated Blueâ€Lightâ€Emitting Poly[(fluorene)â€ <i>co</i> â€(dioctyldibenzothiopheneâ€ <i>S,S</i> â€dioxide)]s. Macromolecular Rapid Communications, 2010, 31, 496-501.	2.0	43