Christophe Ramseyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6796416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Scientific Reports, 2019, 9, 5627.	3.3	95
2	Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nature Communications, 2017, 8, 15678.	12.8	86
3	Molecular selectivity due to adsorption properties in nanotubes. Physical Review B, 2004, 69, .	3.2	80
4	The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Scientific Reports, 2017, 7, 16078.	3.3	67
5	Insertion of Short Amino-Functionalized Single-Walled Carbon Nanotubes into Phospholipid Bilayer Occurs by Passive Diffusion. PLoS ONE, 2012, 7, e40703.	2.5	67
6	Affinity of C ₆₀ Neat Fullerenes with Membrane Proteins: A Computational Study on Potassium Channels. ACS Nano, 2010, 4, 4158-4164.	14.6	63
7	How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale, 2013, 5, 10242.	5.6	61
8	Direct growth of the multi-walled carbon nanotubes as a tool to detect ammonia at room temperature. Chemical Physics Letters, 2006, 433, 175-181.	2.6	55
9	New Bioinspired Membrane Made of a Biological Ion Channel Confined into the Cylindrical Nanopore of a Solid-State Polymer Nano Letters, 2011, 11, 712-716.	9.1	51
10	Molecular dynamics study of the KcsA channel at 2.0-Ã resolution: stability and concerted motions within the pore. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1661, 26-39.	2.6	45
11	Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1724-1734.	2.6	42
12	Comparative study ofab initioand tight-binding electronic structure calculations applied to platinum surfaces. Physical Review B, 2004, 70, .	3.2	40
13	About the structural role of disulfide bridges in serum albumins: Evidence from protein simulated unfolding. Biopolymers, 2012, 97, 889-898.	2.4	37
14	Uptake and Translocation Mechanisms of Cationic Amino Derivatives Functionalized on Pristine C60 by Lipid Membranes: A Molecular Dynamics Simulation Study. ACS Nano, 2011, 5, 8571-8578.	14.6	36
15	Will C-Laurdan Dethrone Laurdan in Fluorescent Solvent Relaxation Techniques for Lipid Membrane Studies?. Langmuir, 2013, 29, 1174-1182.	3.5	35
16	Targeted molecular dynamics of an open-state KcsA channel. Journal of Chemical Physics, 2005, 122, 134707.	3.0	34
17	Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. Scientific Reports, 2019, 9, 17214.	3.3	34
18	Confinement effects on the growth of adsorbates: Interpretation of the formation of monoatomic Ag wires on Pt(997). Physical Review B. 2000. 61, 16154-16162.	3.2	33

#	Article	IF	CITATIONS
19	A Stable Roomâ€Temperature Molecular Assembly of Zwitterionic Organic Dipoles Guided by a Si(111)â€7×7 Template Effect. Angewandte Chemie - International Edition, 2007, 46, 9287-9290.	13.8	32
20	Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors. European Journal of Medicinal Chemistry, 2015, 103, 163-174.	5.5	32
21	Growth of composition-modulated Ag/Co wires on Pt(997). Physical Review B, 2001, 64, .	3.2	31
22	Low-Density Lipoproteins and Human Serum Albumin as Carriers of Squalenoylated Drugs: Insights from Molecular Simulations. Molecular Pharmaceutics, 2018, 15, 585-591.	4.6	29
23	Relaxation effects on the magnetism of decorated step edges:Coâ^•Pt(664). Physical Review B, 2006, 73, .	3.2	28
24	How long a functionalized carbon nanotube can passively penetrate a lipid membrane. Carbon, 2012, 50, 5301-5308.	10.3	26
25	Determination of mean and Gaussian curvatures of highly curved asymmetric lipid bilayers: the case study of the influence of cholesterol on the membrane shape. Physical Chemistry Chemical Physics, 2014, 16, 17052.	2.8	26
26	Oxidation of Zinc–Thiolate Complexes of Biological Interest by Hydrogen Peroxide: A Theoretical Study. Inorganic Chemistry, 2011, 50, 5407-5416.	4.0	25
27	Controlling potassium selectivity and proton blocking in a hybrid biological/solid-state polymer nanoporous membrane. Nanoscale, 2013, 5, 3961.	5.6	24
28	Ab initio investigation of the atomic charges in the KcsA channel selectivity filter. Chemical Physics Letters, 2004, 397, 510-515.	2.6	23
29	Incidence of partial charges on ion selectivity in potassium channels. Journal of Chemical Physics, 2006, 124, 044703.	3.0	23
30	lon conductance vs. pore gating and selectivity in KcsA channel: Modeling achievements and perspectives. Journal of Molecular Modeling, 2007, 13, 699-713.	1.8	23
31	Characterization of theCu(110)â^'(2×1)Oreconstruction by means of molecular adsorption. Physical Review B, 1998, 58, 9998-10002.	3.2	22
32	Model for thermal desorption of hydrogen atoms from a graphite surface based on kinetic Monte Carlo simulations. Physical Review B, 2008, 77, .	3.2	22
33	Quantum-well resonances and image states in the Ar/Cu() system. Surface Science, 2003, 540, 457-473.	1.9	21
34	Adsorption and structure of N2 on Pt(111). Surface Science, 2000, 444, 163-179.	1.9	20
35	Empirical force field for cisplatin based on quantum dynamics data: case study of new parameterization scheme for coordination compounds. Journal of Molecular Modeling, 2015, 21, 268.	1.8	20
36	A principal component analysis of the dynamics of subdomains and binding sites in human serum albumin. Biopolymers, 2014, 101, 561-572.	2.4	18

CHRISTOPHE RAMSEYER

#	Article	IF	CITATIONS
37	Interaction of C ₆₀ fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 278-284.	2.8	18
38	Formation of one-dimensional ordered alloy at step edges: An atomistic study of the (2×1) Ni/Pt alloy on the Pt(997) surface. Surface Science, 2011, 605, 917-922.	1.9	17
39	Selective Inhibition of STAT3 with Respect to STAT1: Insights from Molecular Dynamics and Ensemble Docking Simulations. Journal of Chemical Information and Modeling, 2016, 56, 1588-1596.	5.4	17
40	N2monolayer and bilayer adsorbed on Ag(110) at 15 K: Structure and orientational ordering. Physical Review B, 1998, 58, 4111-4119.	3.2	16
41	Selective adsorption and structure formation ofN2on the nanostructured Cu-CuO stripe phase. Physical Review B, 2002, 66, .	3.2	15
42	Image states on a free-electron metal surface covered by an atomically thin insulator layer. Surface Science, 2003, 528, 78-83.	1.9	15
43	Theoretical insights into the mechanism of redox switch in heat shock protein Hsp33. Journal of Biological Inorganic Chemistry, 2015, 20, 555-562.	2.6	15
44	Effect of the diffusion anisotropy on the nucleation and growth of xenon on Cu(110). Surface Science, 2000, 446, L113-L119.	1.9	14
45	Structure of Xe adsorbed on the highly corrugatedCu(110)â^'(2×1)Osurface. Physical Review B, 1998, 57, 13149-13157.	3.2	13
46	Growth of perfect and smooth Ag and Co monatomic wires on Pt vicinal surfaces: A kinetic Monte Carlo study. Surface Science, 2009, 603, 22-26.	1.9	13
47	Oxidation reactivity of zinc–cysteine clusters in metallothionein. Journal of Biological Inorganic Chemistry, 2013, 18, 333-342.	2.6	13
48	Role of water molecules in the KcsA protein channel by molecular dynamics calculations. Physical Chemistry Chemical Physics, 2005, 7, 4138.	2.8	12
49	Insight into the origins of the barrier-less knock-on conduction in the KcsA channel: molecular dynamics simulations and ab initio calculations. Physical Chemistry Chemical Physics, 2007, 9, 1219.	2.8	12
50	Dielectric constant of electrolyte solutions confined in a charged nanofiltration membrane. Desalination, 2006, 200, 125-126.	8.2	10
51	Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?. Comptes Rendus Chimie, 2018, 21, 974-986.	0.5	10
52	Stacking as a Key Property for Creating Nanoparticles with Tunable Shape: The Case of Squalenoyl-Doxorubicin. ACS Nano, 2019, 13, 12870-12879.	14.6	10
53	First-principles investigation of Co wires at Pt(111) step-edges. Surface Science, 2006, 600, 4301-4304.	1.9	9
54	Determination of the charge profile in the KcsA selectivity filter using ab initio calculations and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2009, 11, 8606.	2.8	9

Christophe Ramseyer

#	Article	IF	CITATIONS
55	Scaling of submonolayer island sizes in Ag growth on stepped Pt surfaces. Surface Science, 2010, 604, 1576-1583.	1.9	9
56	Structures of single, double and triple layers of lipids adsorbed on graphene: Insights from all-atom molecular dynamics simulations. Carbon, 2017, 118, 358-369.	10.3	9
57	Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809.	5.6	9
58	Structure of N2 adlayers on the highly corrugated Cu(110)–(2×1)O surface. Surface Science, 1999, 423, 175-188.	1.9	8
59	Atomic diffusion inside a STM junction: simulations by kinetic Monte Carlo coupled to tunneling current calculations. Surface Science, 2003, 523, 267-278.	1.9	8
60	Determination of the single wall carbon nanotube opening ratio by means of rare gas adsorption. Chemical Physics Letters, 2006, 423, 183-186.	2.6	8
61	Fate of cisplatin and its main hydrolysed forms in the presence of thiolates: a comprehensive computational and experimental study. Metallomics, 2019, 11, 833-844.	2.4	8
62	Grating formation in step flow heterogeneous growth and wavelength selection induced by confinement. Surface Science, 2004, 553, L68-L74.	1.9	7
63	A molecular dynamics study of catestatin docked on nicotinic acetylcholine receptors to identify amino acids potentially involved in the binding of chromogranin A fragments. Physical Chemistry Chemical Physics, 2015, 17, 17454-17460.	2.8	7
64	Negative ion resonance of a molecule adsorbed on a metal surface covered with a rare gas monolayer. Surface Science, 2006, 600, 803-814.	1.9	6
65	Stability of the gramicidin-A channel structure in view of nanofiltration: a computational and experimental study. Soft Matter, 2011, 7, 10651.	2.7	6
66	Dynamics of confined Xe monolayers adsorbed on the Pt(997) vicinal surface. Surface Science, 1998, 400, 176-188.	1.9	5
67	Resonant electron scattering by N2 molecules on Ag(110): study of the orientational ordering of the N2 physisorbed layers. Surface Science, 2000, 465, 138-148.	1.9	5
68	Efficiency of the monofunctionalized C60fullerenes as membrane targeting agents studied by all-atom molecular dynamics simulations. Molecular Membrane Biology, 2013, 30, 338-345.	2.0	5
69	Enhanced potassium selectivity in a bioinspired solid nanopore. Physical Chemistry Chemical Physics, 2013, 15, 19601.	2.8	5
70	Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages. JCI Insight, 2020, 5, .	5.0	5
71	Zip gating of the KcsA channel studied by targeted molecular dynamics. Chemical Physics Letters, 2005, 407, 199-204.	2.6	4
72	Alignment of single-wall carbon nanotubes by inclusion of dipolar wires. Physical Review B, 2005, 72, .	3.2	4

Christophe Ramseyer

#	Article	IF	CITATIONS
73	Is the mobility of the pore walls and water molecules in the selectivity filter of KcsA channel functionally important?. Physical Chemistry Chemical Physics, 2008, 10, 2249.	2.8	4
74	Insertion kinetics of small nucleotides through single walled carbon nanotube. Journal of Biotechnology, 2013, 164, 13-18.	3.8	4
75	Membrane Environment Modulates Ligand-Binding Propensity of P2Y12 Receptor. Pharmaceutics, 2021, 13, 524.	4.5	4
76	First stages of epitaxial growth in the presence of an extended defect: Kinetic Monte Carlo simulations versus rate equation study on a vicinal surface. Physical Review B, 2007, 76, .	3.2	3
77	Conditions for organized nanoring growth using kinetic Monte Carlo simulations. Physical Review B, 2008, 77, .	3.2	3
78	Influence of step geometry and orientation on the growth of adsorbates. Surface Science, 2000, 454-456, 106-111.	1.9	2
79	Ordering of nitrogen molecules on the nanostructured Cu(110)/Cu(110)–(2×1)O stripe phase. Surface Science, 2001, 482-485, 1379-1384.	1.9	2
80	Reply to "Comment on â€~Effect of the structural anisotropy and lateral strain on the surface phonons of monolayer xenon on Cu(110)' ― Physical Review B, 2001, 64, .	3.2	2
81	A theoretical study of the unfolding pathway of reduced Human serum albumin. Journal of Molecular Modeling, 2015, 21, 106.	1.8	2
82	Ab initio study of the influence of conformation on partial charge distribution of dioctadecylamine. Chemical Physics Letters, 2003, 380, 424-434.	2.6	1
83	Orientational ordering in physisorbed molecular layers induced by surface geometry and confinement. International Journal of Quantum Chemistry, 2004, 99, 735-742.	2.0	1
84	Influence of Substrate Hydrophilicity on Structural Properties of Supported Lipid Systems on Graphene, Graphene Oxides, and Silica. Journal of Physical Chemistry B, 2021, 125, 8060-8074.	2.6	1
85	Improvement of nanowire distributions with a STM tip: a kinetic Monte Carlo approach. Surface Science, 2003, 532-535, 531-535.	1.9	0
86	Probing defect species on real surfaces from the analysis of the spectral profile of admolecules. Surface Science, 2009, 603, 887-894.	1.9	0
87	CHARACTERIZATION OF SURFACE DEFECTS THROUGH THE MODIFICATION OF THE INFRARED PROFILE OF ADMOLECULES: APPLICATION TO CO MOLECULES ADSORBED ON (100) MgO AND NaCI SURFACES. Surface Review and Letters 2010, 17, 431-436	1.1	0