Yoshitaka Naitoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/679638/publications.pdf

Version: 2024-02-01

		430874	3	377865
55	1,227	18		34
papers	citations	h-index		g-index
56	56	56		1375
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Properties of large organic molecules on metal surfaces. Progress in Surface Science, 2003, 71, 95-146.	8.3	419
2	One-Dimensional Assembly and Selective Orientation of Lander Molecules on an O–Cu Template. Angewandte Chemie - International Edition, 2004, 43, 2092-2095.	13.8	99
3	Origin ofp(2×1)Phase on Si(001) by Noncontact Atomic Force Microscopy at 5ÂK. Physical Review Letters, 2006, 96, 106104.	7.8	52
4	High potential sensitivity in heterodyne amplitude-modulation Kelvin probe force microscopy. Applied Physics Letters, 2012, 100, .	3.3	51
5	The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes. Nanotechnology, 2013, 24, 225701.	2.6	45
6	Nanostructuring Cu Surfaces Using Custom-Designed Molecular Molds. Nano Letters, 2004, 4, 75-78.	9.1	42
7	Optical force mapping at the single-nanometre scale. Nature Communications, 2021, 12, 3865.	12.8	30
8	Elimination of instabilities in phase shift curves in phase-modulation atomic force microscopy in constant-amplitude mode. Applied Physics Letters, 2007, 90, 194104.	3.3	28
9	Multifrequency high-speed phase-modulation atomic force microscopy in liquids. Ultramicroscopy, 2010, 110, 582-585.	1.9	25
10	Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1210-1214.	1.2	25
11	The influence of a Si cantilever tip with/without tungsten coating on noncontact atomic force microscopy imaging of a Ge(001) surface. Nanotechnology, 2009, 20, 264011.	2.6	24
12	High-Sensitivity Force Detection by Phase-Modulation Atomic Force Microscopy. Japanese Journal of Applied Physics, 2006, 45, L793-L795.	1.5	21
13	Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition. Review of Scientific Instruments, 2011, 82, 113707.	1.3	21
14	Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback. Nanotechnology, 2015, 26, 195701.	2.6	21
15	Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces. Review of Scientific Instruments, 2016, 87, 093113.	1.3	20
16	Investigation of tunneling current and local contact potential difference on the TiO ₂ (110) surface by AFM/KPFM at 78 K. Nanotechnology, 2017, 28, 105704.	2.6	20
17	Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic forceÂmicroscopy. Nature Physics, 2017, 13, 663-667.	16.7	19
18	Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surface Science, 2008, 602, 2175-2182.	1.9	18

#	Article	IF	CITATIONS
19	Development of atomic force microscope with wide-band magnetic excitation for study of soft matter dynamics. Review of Scientific Instruments, 2009, 80, 023705.	1.3	17
20	Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance. Nanotechnology, 2015, 26, 125701.	2.6	17
21	Effect of Surface Stress around the S _A Step of Si(001) on the Dimer Structure Determined by Noncontact Atomic Force Microscopy at 5 K. Journal of the Physical Society of Japan, 2010, 79, 013601.	1.6	14
22	High-Speed Phase-Modulation Atomic Force Microscopy in Constant-Amplitude Mode Capable of Simultaneous Measurement of Topography and Energy Dissipation. Japanese Journal of Applied Physics, 2008, 47, 6121.	1.5	13
23	Stable contrast mode on TiO2(110) surface with metal-coated tips using AFM. Ultramicroscopy, 2018, 191, 51-55.	1.9	13
24	Scanning Tunneling Microscopy and Spectroscopy Studies of Individual Lander Molecules Anchored on a Copper Oxide Nanotemplate. Journal of Physical Chemistry C, 2008, 112, 16118-16122.	3.1	12
25	Phase modulation atomic force microscopy in constant excitation mode capable of simultaneous imaging of topography and energy dissipation. Applied Physics Letters, 2008, 92, 121903.	3.3	11
26	Complex design of dissipation signals in non-contact atomic force microscopy. Physical Chemistry Chemical Physics, 2012, 14, 16250.	2.8	11
27	Wideband and hysteresis-free regulation of piezoelectric actuator based on induced current for high-speed scanning probe microscopy. Review of Scientific Instruments, 2006, 77, 103701.	1.3	10
28	Step response measurement of AFM cantilever for analysis of frequency-resolved viscoelasticity. Ultramicroscopy, 2010, 110, 612-617.	1.9	10
29	High force sensitivity in Q-controlled phase-modulation atomic force microscopy. Applied Physics Letters, 2010, 97, .	3.3	8
30	Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110). Nanotechnology, 2015, 26, 505704.	2.6	8
31	Simultaneous observation of scanning tunneling microscopy and reflection electron microscopy image of the Si(111)7×7 surface. Surface Science, 1999, 433-435, 627-631.	1.9	7
32	Dissipative force modulation Kelvin probe force microscopy applying doubled frequency ac bias voltage. Applied Physics Letters, 2007, 90, 033118.	3.3	7
33	Formation process of very thin Ag structures on Ge() surface below RT. Surface Science, 2002, 513, 1-8.	1.9	6
34	Theoretical investigation on force sensitivity in Q-controlled phase-modulation atomic force microscopy in constant-amplitude mode. Journal of Applied Physics, 2008, 103, 054305.	2.5	6
35	Atomic-Resolution Imaging of the Optical Near Field Based on the Surface Photovoltage of a Silicon Probe Tip. Physical Review Applied, 2015, 3, .	3.8	6
36	Direct Visualization of Oxygen Reaction with Paired Hydroxyl on TiO2(110) Surface at 78 K by Atomic Force Microscopy. Journal of Physical Chemistry C, 2018, 122, 17395-17399.	3.1	6

3

#	Article	IF	CITATIONS
37	Local spectroscopic imaging of a single quantum dot in photoinduced force microscopy. Applied Physics Letters, 2022, 120, .	3.3	6
38	Study of high–low KPFM on a pn-patterned Si surface. Microscopy (Oxford, England), 2022, 71, 98-103.	1.5	5
39	Nanoscale optical imaging with photoinduced force microscopy in heterodyne amplitude modulation and heterodyne frequency modulation modes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100532.	11.6	5
40	Electronic structures of Ag/Ge(001) surfaces. Surface Science, 2005, 591, 108-116.	1.9	4
41	Switching surface polarization of atomic force microscopy probe utilizing photoisomerization of photochromic molecules. Journal of Applied Physics, 2011, 109, 064308. Quantification of Atomic-Scale Elasticity on Ge(001)- <mml:math< td=""><td>2.5</td><td>4</td></mml:math<>	2.5	4
42	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>c</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>4</mml:mn> <mml:mo) (m<="" 0="" 10="" 50="" 542="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>athvariant 7.8</td><td>:="bold">×<</td></mml:mo)>	athvariant 7.8	:="bold">×<
43	Tungsten-Coated Tip. Physical Review Letters, 2012, 109, 215501. SURFACE TRANSMISSION ELECTRON MICROSCOPY ON STRUCTURES WITH TRUNCATION. Surface Review and Letters, 1997, 04, 687-694.	1.1	2
44	Force Microscopy Imaging of Rest Atom on Si(111)7×7 Surface under Strong Tip–Surface Interaction. Journal of the Physical Society of Japan, 2007, 76, 033601.	1.6	2
45	Atomic-Scale Imaging of B/Si(111)â^š3×â^š3 Surface by Noncontact Atomic Force Microscopy. Japanese Journal of Applied Physics, 2008, 47, 8218.	1.5	2
46	Growth models of coexisting $\langle i \rangle p \langle i \rangle (2 \tilde{A}-1)$ and $\langle i \rangle c \langle i \rangle (6 \tilde{A}-2)$ phases on an oxygen-terminated Cu(110) surface studied by noncontact atomic force microscopy at 78 K. Nanotechnology, 2016, 27, 205702.	2.6	2
47	Force Mapping of the NaCl(100)/Cu(111) Surface by Atomic Force Microscopy at 78 K. Japanese Journal of Applied Physics, 2012 , 51 , 035201 .	1.5	1
48	Distance dependence of atomic-resolution near-field imaging on \hat{l}_{\pm} -Al2O3 (0001) surface with respect to surface photovoltage of silicon probe tip. Nano Research, 2016, 9, 530-536.	10.4	1
49	Kelvin Probe Force Microscopy with. Springer Series in Surface Sciences, 2018, , 437-463.	0.3	1
50	Spin-selective Imaging by Magnetic Exchange Force Microscopy Using Ferromagnetic Resonance. Microscopy (Oxford, England), 2014, 63, i11.2-i11.	1.5	0
51	Separation of atomic-scale spin contrast on NiO(0 0 1) by magnetic resonance force microscopy. Journal of Physics Condensed Matter, 2017, 29, 404001.	1.8	0
52	Atomic-Scale Elastic Property Probed by Atomic Force Microscopy., 2019,, 33-52.		0
53	Influence of Surface Stress on the Phase Change in a Si(001) Step Measured by LT-NC-AFM. Hyomen Kagaku, 2007, 28, 421-427.	0.0	0
54	Development of the Magnetic Exchange Force Microscopy Using Ferromagnetic Resonance to Image Surface Spin with Atomic Resolution. Hyomen Kagaku, 2016, 37, 416-421.	0.0	0

#	Article	lF	CITATIONS
55	Charge State and Charge Manipulation of Oxygen Molecules Adsorbed on Rutile TiO ₂ (110) Surface by Kelvin Probe Force Microscopy. Vacuum and Surface Science, 2018, 61, 639-644.	0.1	O