
Ricardo A Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6796339/publications.pdf Version: 2024-02-01

RICADO A DIDES

#	Article	IF	CITATIONS
1	Forecast cancer: the importance of biomimetic 3D in vitro models in cancer drug testing/discovery and therapy. In Vitro Models, 2022, 1, 119-123.	2.0	2
2	Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends in Biotechnology, 2021, 39, 90-104.	9.3	86
3	3D hydrogel mimics of the tumor microenvironment: the interplay among hyaluronic acid, stem cells and cancer cells. Biomaterials Science, 2021, 9, 252-260.	5.4	13
4	Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. Materials Science and Engineering C, 2021, 119, 111616.	7.3	7
5	Vescalagin and Castalagin Present Bactericidal Activity toward Methicillin-Resistant Bacteria. ACS Biomaterials Science and Engineering, 2021, 7, 1022-1030.	5.2	13
6	Glucosamine and Its Analogues as Modulators of Amyloid-β Toxicity. ACS Medicinal Chemistry Letters, 2021, 12, 548-554.	2.8	3
7	Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications. CheM, 2021, 7, 2943-2964.	11.7	42
8	Bioactivity of Biosilica Obtained From North Atlantic Deep-Sea Sponges. Frontiers in Marine Science, 2021, 8, .	2.5	2
9	Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS Applied Bio Materials, 2021, 4, 6023-6035.	4.6	2
10	Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. Materials Science and Engineering C, 2021, 126, 112124.	7.3	9
11	Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials, 2021, 279, 121217.	11.4	17
12	Expanding the Conformational Landscape of Minimalistic Tripeptides by Their <i>O</i> -Glycosylation. Journal of the American Chemical Society, 2021, 143, 19703-19710.	13.7	14
13	Functional Gallic Acid-Based Dendrimers as Synthetic Nanotools to Remodel Amyloid-β-42 into Noncytotoxic Forms. ACS Applied Materials & Interfaces, 2021, 13, 59673-59682.	8.0	9
14	Layerâ€byâ€layer films based on catecholâ€modified polysaccharides produced by dip†and spinâ€coating onto different substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1412-1427.	3.4	15
15	Hyaluronic Acid of Low Molecular Weight Triggers the Invasive "Hummingbird―Phenotype on Gastric Cancer Cells. Advanced Biology, 2020, 4, e2000122.	3.0	8
16	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. Biomacromolecules, 2020, 21, 3582-3595.	5.4	17
17	Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules, 2020, 21, 4771-4780.	5.4	11
18	Convection patterns gradients of non-living and living micro-entities in hydrogels. Applied Materials Today, 2020, 21, 100859.	4.3	3

RICARDO A PIRES

#	Article	IF	CITATIONS
19	Aromatic carbohydrate amphiphile disrupts cancer spheroids and prevents relapse. Nanoscale, 2020, 12, 19088-19092.	5.6	8
20	Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chemical Science, 2020, 11, 3737-3744.	7.4	21
21	Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. Journal of Materials Chemistry B, 2020, 8, 3880-3885.	5.8	31
22	Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties. Molecules, 2020, 25, 840.	3.8	16
23	Vescalagin and castalagin reduce the toxicity of amyloid-beta42 oligomers through the remodelling of its secondary structure. Chemical Communications, 2020, 56, 3187-3190.	4.1	7
24	Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. Advances in Experimental Medicine and Biology, 2020, 1250, 159-176.	1.6	4
25	Minimalistic supramolecular proteoglycan mimics by co-assembly of aromatic peptide and carbohydrate amphiphiles. Chemical Science, 2019, 10, 2385-2390.	7.4	60
26	Tropoelastin-Coated Tendon Biomimetic Scaffolds Promote Stem Cell Tenogenic Commitment and Deposition of Elastin-Rich Matrix. ACS Applied Materials & Interfaces, 2019, 11, 19830-19840.	8.0	42
27	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	5.0	12
28	Sponge-derived silica for tissue regeneration. Materials Today, 2018, 21, 577-578.	14.2	7
28 29	Sponge-derived silica for tissue regeneration. Materials Today, 2018, 21, 577-578. The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.	14.2 5.8	7 10
	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue		
29	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.		10
29 30	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115. Sweet building blocks for self-assembling biomaterials with molecular recognition. , 2018, , 79-94. Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric	5.8	10 2
29 30 31	 The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115. Sweet building blocks for self-assembling biomaterials with molecular recognition. , 2018, , 79-94. Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. 	5.8 3.3	10 2 47
29 30 31 32	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115. Sweet building blocks for self-assembling biomaterials with molecular recognition. , 2018, , 79-94. Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. Nanoscale, 2018, 10, 17388-17401. Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for CD44 Targeted Drug Delivery.	5.8 3.3 5.6	10 2 47 34
29 30 31 32 33	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115. Sweet building blocks for self-assembling biomaterials with molecular recognition. , 2018, , 79-94. Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. Nanoscale, 2018, 10, 17388-17401. Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for CD44 Targeted Drug Delivery. Biomacromolecules, 2018, 19, 2991-2999. Tuning the Stiffness of Surfaces by Assembling Genetically Engineered Polypeptides with Tailored	5.8 3.3 5.6 5.4	10 2 47 34 26

RICARDO A PIRES

#	Article	IF	CITATIONS
37	Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): optimization of extraction conditions, chemical composition and antioxidant potential. Wood Science and Technology, 2017, 51, 855-872.	3.2	25
38	Cork: Current Technological Developments and Future Perspectives for this Natural, Renewable, and Sustainable Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 11130-11146.	6.7	53
39	Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia, 2017, 59, 2-11.	8.3	178
40	Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. Materials Science and Engineering C, 2017, 71, 252-259.	7.3	11
41	Surfaces Mimicking Glycosaminoglycans Trigger Different Response of Stem Cells via Distinct Fibronectin Adsorption and Reorganization. ACS Applied Materials & Interfaces, 2016, 8, 28428-28436.	8.0	7
42	Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomaterialia, 2016, 44, 168-177.	8.3	53
43	Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Advances, 2016, 6, 114599-114612.	3.6	6
44	Intrinsic Antibacterial Borosilicate Glasses for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1143-1150.	5.2	26
45	Design and Properties of Novel Substituted Borosilicate Bioactive Glasses and Their Glass-Ceramic Derivatives. Crystal Growth and Design, 2016, 16, 3731-3740.	3.0	18
46	Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polymer Degradation and Stability, 2015, 116, 45-52.	5.8	18
47	Bioresorbable ureteral stents from natural origin polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 608-617.	3.4	46
48	Cork extracts reduce UV-mediated DNA fragmentation and cell death. RSC Advances, 2015, 5, 96151-96157.	3.6	13
49	Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. Journal of the American Chemical Society, 2015, 137, 576-579.	13.7	260
50	Research Highlights: Highlights from the latest articles in nanomedicine. Nanomedicine, 2014, 9, 573-576.	3.3	0
51	Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2014, 2, 1195-1209.	5.4	54
52	Hyaluronic acid/poly- <scp>l</scp> -lysine bilayered silica nanoparticles enhance the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2014, 2, 6939-6946.	5.8	41
53	Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal, 2014, 253, 408-417.	12.7	121
54	Bioactive Composites Reinforced with Inorganic Glasses and Glass–Ceramics for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2014, , 331-353.	1.0	1

RICARDO A PIRES

#	Article	IF	CITATIONS
55	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	24.7	224
56	Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomaterialia, 2013, 9, 9086-9097.	8.3	57
57	Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability. Materials Science and Engineering C, 2013, 33, 1361-1370.	7.3	20
58	Interactions between Exogenous FGF-2 and Sulfonic Groups: in Situ Characterization and Impact on the Morphology of Human Adipose-Derived Stem Cells. Langmuir, 2013, 29, 7983-7992.	3.5	26
59	Sulfonic groups induce formation of filopodia in mesenchymal stem cells. Journal of Materials Chemistry, 2012, 22, 7172.	6.7	25
60	Isolation of Friedelin from Black Condensate of Cork. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	6
61	Isolation of friedelin from black condensate of cork. Natural Product Communications, 2011, 6, 1577-9.	0.5	1
62	Surface properties of extracts from cork black condensate. Holzforschung, 2010, 64, .	1.9	8
63	The role of alumina in aluminoborosilicate glasses for use in glass–ionomer cements. Journal of Materials Chemistry, 2009, 19, 3652.	6.7	18
64	The role of aluminium and silicon in the setting chemistry of glass ionomer cements. Journal of Materials Science: Materials in Medicine, 2008, 19, 1687-1692.	3.6	18
65	Structural and spatially resolved studies on the hardening of a commercial resin-modified glass-ionomer cement. Journal of Materials Science: Materials in Medicine, 2007, 18, 787-796.	3.6	7
66	Multinuclear magnetic resonance studies of borosilicate glasses for use in glass ionomer cements: incorporation of CaO and Al2O3. Journal of Materials Chemistry, 2006, 16, 2364.	6.7	10
67	Stray-field imaging and multinuclear magnetic resonance spectroscopy studies on the setting of a commercial glass-ionomer cement. Journal of Materials Science: Materials in Medicine, 2004, 15, 201-208.	3.6	26
68	Non-random cation distribution in sodium–strontium–phosphate glasses. Journal of Non-Crystalline Solids, 2004, 337, 1-8.	3.1	24
69	1H stray-field long spin-echo trains and MRI: novel studies on the photopolymerization of a commercial dental resin. Journal Physics D: Applied Physics, 2002, 35, 1251-1257.	2.8	10
70	The study of a commercial dental resin by 1H stray-field magnetic resonance imaging. Polymer, 2001, 42, 8051-8054.	3.8	21