Ahmet âtİnkaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6796/publications.pdf

Version: 2024-02-01

840776 25 522 11 citations h-index papers

22 g-index 25 25 25 451 docs citations times ranked citing authors all docs

677142

#	Article	IF	Citations
1	Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins. Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 59-65.	3.8	94
2	Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 23-32.	4.7	53
3	Latest advances on the nanomaterials-based electrochemical analysis of azo toxic dyes Sunset Yellow and Tartrazine in food samples. Food and Chemical Toxicology, 2021, 156, 112524.	3.6	50
4	Electrokinetic and rheological properties of sepiolite suspensions in the presence of hexadecyltrimethylammonium bromide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 123-129.	4.7	44
5	Sensor-based MIP technologies for targeted metabolomics analysis. TrAC - Trends in Analytical Chemistry, 2022, 146, 116487.	11.4	39
6	Boron-Doped Diamond Electrodes: Recent Developments and Advances in View of Electrochemical Drug Sensors. Critical Reviews in Analytical Chemistry, 2022, 52, 1122-1138.	3.5	27
7	A molecularly imprinted electrochemical sensor based on highly selective and an ultra-trace assay of anti-cancer drug axitinib in its dosage form and biological samples. Talanta, 2021, 233, 122569.	5.5	23
8	Trends in sensitive electrochemical sensors for endocrine disruptive compounds. Trends in Environmental Analytical Chemistry, 2020, 28, e00106.	10.3	22
9	Green analytical chemistry approaches on environmental analysis. Trends in Environmental Analytical Chemistry, 2022, 33, e00157.	10.3	22
10	A porous molecularly imprinted nanofilm for selective and sensitive sensing of an anticancer drug ruxolitinib. Analytica Chimica Acta, 2021, 1187, 339143.	5.4	17
11	Simple and highly sensitive assay of axitinib in dosage form and biological samples and its electrochemical behavior on the boron-doped diamond and glassy carbon electrodes. Electrochimica Acta, 2021, 386, 138443.	5.2	15
12	A green synthesis route to develop molecularly imprinted electrochemical sensor for selective detection of vancomycin from aqueous and serum samples. , 2022, 2, 100017.		15
13	A sensitive and selective electrochemical sensor based on molecularly imprinted polymer for the assay of teriflunomide. Talanta, 2022, 249, 123689.	5.5	14
14	The role and the place of ionic liquids in molecularly imprinted polymer-based electrochemical sensors development for sensitive drug assay. TrAC - Trends in Analytical Chemistry, 2022, 147, 116512.	11.4	13
15	Computational design and fabrication of a highly selective and sensitive molecularly imprinted electrochemical sensor for the detection of enzalutamide. Journal of Electroanalytical Chemistry, 2022, 907, 116030.	3.8	11
16	A highly sensitive and selective electrochemical sensor based on computer-aided design of molecularly imprinted polymer for the determination of leflunomide. Microchemical Journal, 2022, 179, 107496.	4.5	11
17	Latest Advances in Determination of Bisphenols with Nanomaterials, Molecularly Imprinted Polymers and Aptamer Based Electrochemical Sensors. Critical Reviews in Analytical Chemistry, 2022, 52, 1223-1243.	3.5	10
18	Nanomaterial-based electroanalytical sensors for the selected prohibited anabolic agents, hormones and metabolic modulators and their sensitive assays. TrAC - Trends in Analytical Chemistry, 2021, 145, 116457.	11.4	9

#	Article	IF	CITATIONS
19	Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the- Art Electroanalytical Techniques. Current Analytical Chemistry, 2022, 18, 79-101.	1.2	8
20	Sensitive and cost-effective boron doped diamond and Fe2O3/Chitosan nanocomposite modified glassy carbon electrodes for the trace level quantification of anti-diabetic dapagliflozin drug. Journal of Electroanalytical Chemistry, 2022, 908, 116092.	3.8	8
21	Spectroscopic, electrochemical, and some theoretical studies on the interactional of neuraminidase inhibitor zanamivir with double helix deoxyribonucleic acid. Journal of Molecular Structure, 2022, 1262, 133029.	3.6	6
22	Detailed electrochemical behavior and thermodynamic parameters of anticancer drug regorafenib and its sensitive electroanalytical assay in biological and pharmaceutical samples. Microchemical Journal, 2021, 170, 106717.	4.5	5
23	Electrochemical Sensing of Anticancer Drug Using New Electrocatalytic Approach. Topics in Catalysis, 2022, 65, 703-715.	2.8	4
24	Recent biopharmaceutical applications of capillary electrophoresis methods on recombinant DNA technologyâ€based products. Electrophoresis, 2022, 43, 1035-1049.	2.4	2
25	Investigation of Pazopanib and Human Serum Albumin Interaction Using Spectroscopic and Molecular Docking Approaches. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 144-160.	1.7	0