José TomÃ;s Matus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6795939/publications.pdf

Version: 2024-02-01

42 papers

2,882 citations

257357 24 h-index 276775 41 g-index

47 all docs

47 docs citations

47 times ranked

3444 citing authors

#	Article	IF	CITATIONS
1	Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology, 2008, 8, 83.	1.6	346
2	Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 2009, 60, 853-867.	2.4	308
3	The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine. Plant Physiology, 2015, 167, 1448-1470.	2.3	272
4	Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biology, 2014, 15, R41.	13.9	210
5	Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Molecular Biology, 2010, 72, 607-620.	2.0	190
6	A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Research, 2016, 23, 451-466.	1.5	141
7	Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.). Plant and Cell Physiology, 2018, 59, 1043-1059.	1.5	116
8	A group of grapevine <scp>MYBA</scp> transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. Plant Journal, 2017, 91, 220-236.	2.8	103
9	The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. Journal of Experimental Botany, 2016, 67, 5429-5445.	2.4	100
10	Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10308-10313.	3.3	95
11	Transcriptomic and Metabolomic Networks in the Grape Berry Illustrate That it Takes More Than Flavonoids to Fight Against Ultraviolet Radiation. Frontiers in Plant Science, 2016, 7, 1337.	1.7	86
12	The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC Plant Biology, 2011, 11, 142.	1.6	79
13	Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene, 2007, 404, 10-24.	1.0	77
14	Constructing Integrated Networks for Identifying New Secondary Metabolic Pathway Regulators in Grapevine: Recent Applications and Future Opportunities. Frontiers in Plant Science, 2017, 8, 505.	1.7	77
15	Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21796-21803.	3.3	77
16	The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides. Journal of Experimental Botany, 2018, 69, 1749-1764.	2.4	74
17	Transcriptome-Wide Identification of Novel UV-B- and Light Modulated Flavonol Pathway Genes Controlled by VviMYBF1. Frontiers in Plant Science, 2017, 8, 1084.	1.7	61
18	Arabidopsis paves the way: genomic and network analyses in crops. Current Opinion in Biotechnology, 2011, 22, 260-270.	3.3	55

#	Article	IF	CITATIONS
19	Inspection of the Grapevine BURP Superfamily Highlights an Expansion of RD22 Genes with Distinctive Expression Features in Berry Development and ABA-Mediated Stress Responses. PLoS ONE, 2014, 9, e110372.	1.1	42
20	Reply to Storey <i>et al.</i> : More DNA and dating studies needed for ancient El Arenal-1 chickens. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, .	3.3	36
21	The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3: Genes, Genomes, Genetics, 2019, 9, 769-787.	0.8	34
22	Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato (Solanum) Tj ETQc	0 0 0 rgBT 1.7	Overlock 10
23	Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine. Journal of Plant Physiology, 2011, 168, 1667-1674.	1.6	27
24	Comprehending and improving cannabis specialized metabolism in the systems biology era. Plant Science, 2020, 298, 110571.	1.7	27
25	Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 <scp>R2R3â€MYBs</scp> in grapevine. Plant Journal, 2022, 110, 529-547.	2.8	24
26	Identification and characterization of a novel tobacco mosaic virus resistance N gene homologue in Nicotiana tabacum plants. Functional Plant Biology, 2004, 31, 149.	1.1	23
27	Genome-wide analyses for dissecting gene regulatory networks in the shoot apical meristem. Journal of Experimental Botany, 2016, 67, 1639-1648.	2.4	22
28	Synthetic seed production from somatic embryos of Pinus radiata. Biotechnology Letters, 2008, 30, 1847-1852.	1.1	21
29	The Grape Gene Reference Catalogue as a Standard Resource for Gene Selection and Genetic Improvement. Frontiers in Plant Science, 2021, 12, 803977.	1.7	19
30	Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. †Moscatel Galegoâ€). BMC Genomics, 2019, 20, 952.	1.2	17
31	Vitis OneGenE: A Causality-Based Approach to Generate Gene Networks in Vitis vinifera Sheds Light on the Laccase and Dirigent Gene Families. Biomolecules, 2021, 11, 1744.	1.8	16
32	The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants. Journal of Molecular Graphics and Modelling, 2008, 26, 850-860.	1.3	15
33	Genetic and histological studies on the delayed systemic movement of Tobacco Mosaic Virus in Arabidopsis thaliana. BMC Genetics, 2008, 9, 59.	2.7	14
34	Metabolite analysis reveals distinct spatio-temporal accumulation of anthocyanins in two teinturier variants of cv. â€~Gamay' grapevines (Vitis vinifera L.). Planta, 2021, 253, 84.	1.6	10
35	Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (<i>Solanum lycopersicum</i> L. cv. Micro-Tom). PeerJ, 2020, 8, e9742.	0.9	9
36	Phytoplasma and virus detection in commercial plantings of Vitis vinifera cv. Merlot exhibiting premature berry dehydration. Electronic Journal of Biotechnology, 2008, 11, 0-0.	1.2	6

#	Article	IF	CITATIONS
37	VIRUS INCIDENCE IN RASPBERRIES, BLACKBERRIES AND RED CURRANT COMMERCIAL PLANTINGS OF CENTRAL AND SOUTH CHILE. Acta Horticulturae, 2008, , 361-366.	0.1	5
38	Identification of Arabidopsis Knockout Lines for Genes of Interest. Methods in Molecular Biology, 2014, 1110, 347-362.	0.4	5
39	Status and Prospects of Systems Biology in Grapevine Research. Compendium of Plant Genomes, 2019, , 137-166.	0.3	2
40	A COMPASS for VESPUCCI: A FAIR Way to Explore the Grapevine Transcriptomic Landscape. Frontiers in Plant Science, 2022, 13, 815443.	1.7	2
41	Development of insulin resistance in horses (Equus caballus): etiologic and molecular aspects. Ciencia E Investigacion Agraria, 2015, 42, 1-1.	0.2	1
42	GENE EXPRESSION CHARACTERIZATION OF NOVEL GRAPE WD-LIKE TRANSCRIPTION FACTORS VVWDL-1 AND VVWDL-2. Acta Horticulturae, 2009, , 303-312.	0.1	0