Naoki Kondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/679547/publications.pdf

Version: 2024-02-01

162 papers 2,059 citations

304743

22

h-index

302126 39 g-index

178 all docs

 $\begin{array}{c} 178 \\ \text{docs citations} \end{array}$

178 times ranked

1177 citing authors

#	Article	IF	CITATIONS
1	Improvement in fracture strength of porous reaction-bonded silicon carbide with unique surface layer by incorporating α-silicon carbide powder as a secondary phase. Journal of the European Ceramic Society, 2022, 42, 5458-5463.	5.7	3
2	Preparation of boron carbon oxynitride phosphor films with compositional and spectral tunability by chemical vapor deposition. Ceramics International, 2022, 48, 31016-31022.	4.8	3
3	Control of microstructure and mechanical properties of sintered aluminum nitride through addition of aluminum nitride whiskers. Journal of Asian Ceramic Societies, 2021, 9, 1248-1254.	2.3	5
4	Sintering of porous alumina using an alumina slurry containing aluminum and polysiloxane. International Journal of Applied Ceramic Technology, 2020, 17, 311-319.	2.1	4
5	A Study on the Sintering of a Mixed Powder Containing Alumina and Aluminum for Control of Volume Shrinkage during Sintering. Journal of Materials Engineering and Performance, 2020, 29, 5594-5601.	2.5	2
6	Preparation of boron carbon oxynitride phosphor film via laser chemical vapor deposition and annealing. Surface and Coatings Technology, 2020, 394, 125851.	4.8	9
7	Effect of thermal conductivity of ceramic compact on the porous structures of foamed bodies via direct-foaming method. Journal of Asian Ceramic Societies, 2020, 8, 176-182.	2.3	5
8	Preparation of zirconium carbonitride by laser chemical vapor deposition using alkyl-amide precursor as a single source. Journal of the Ceramic Society of Japan, 2020, 128, 855-862.	1.1	2
9	Effect of heating rate on the porous structure of an alumina/resin foamed body obtained via direct foaming. Journal of the Ceramic Society of Japan, 2020, 128, 577-581.	1.1	2
10	Comparison of alumina granules prepared by spray freeze granulation drying and spray drying. Journal of the Ceramic Society of Japan, 2020, 128, 922-926.	1.1	1
11	Fabrication and Microstructures of Porous Alumina with Porous-and-Denser Zebra-Patterned Surfaces Created by One-Pot Direct Blowing Method. Ceramic Engineering and Science Proceedings, 2019, , 69-76.	0.1	O
12	Preferred orientations and microstructures of lanthanum phosphate films prepared via laser chemical vapor deposition. Journal of Crystal Growth, 2019, 519, 46-53.	1.5	10
13	Investigation of the effects of silica coating on the thermal conductivity and porosity of aluminum nitride after sintering. Journal of Asian Ceramic Societies, 2019, 7, 496-501.	2.3	1
14	Preparation of alumina ceramics from a slurry with cellulose nanofibers. Journal of the Ceramic Society of Japan, 2018, 126, 198-201.	1.1	4
15	Fabrication and characterization of porous alumina with a surface layer composed of alumina platelet by direct-foaming method. Journal of the Ceramic Society of Japan, 2017, 125, 375-377.	1.1	4
16	Fabrication and characterization of porous alumina with denser surface layer by direct foaming. Journal of the Ceramic Society of Japan, 2017, 125, 7-11.	1.1	7
17	A novel method for joining aluminum and silicon nitride by polysiloxane. Journal of the Ceramic Society of Japan, 2017, 125, 543-546.	1.1	5
18	A novel method for joining aluminum foil and alumina by polysiloxane coating. Journal of the Ceramic Society of Japan, 2017, 125, 846-849.	1.1	3

#	Article	IF	CITATIONS
19	Fabrication of silicon nitride from a slurry containing cellulose nanofibers. Journal of the Ceramic Society of Japan, 2017, 125, 588-590.	1.1	2
20	Green Manufacturing of Silicon Nitride Ceramics. , 2016, , 223-243.		1
21	New Approach for Macro Porous RBâ€SiC Derived from SiC/Novolacâ€type Phenolic Composite. Journal of the American Ceramic Society, 2016, 99, 440-444.	3.8	12
22	Powder layer manufacturing of alumina ceramics using water spray bonding. Journal of the Ceramic Society of Japan, 2016, 124, 750-752.	1.1	7
23	Manufacturing of Ceramic Components using Robust Integration Technologies. , 2016, , 295-308.		1
24	Effect of amounts and types of silicon nitride on thermal conductivity of Si ₃ N ₄ /epoxy resin composite. Journal of the Ceramic Society of Japan, 2015, 123, 908-912.	1.1	18
25	Hot corrosion of Al ₂ O ₃ and SiC ceramics by KCl–NaCl molten salt. Journal of the Ceramic Society of Japan, 2015, 123, 685-689.	1.1	14
26	Preparation of reaction-bonded porous silicon carbide with denser surface layer in one-pot process. Journal of the Ceramic Society of Japan, 2015, 123, 1106-1108.	1.1	12
27	Surface modification of graphite powder with lanthanum ultraphosphate by chemical process and its oxidation resistance. Advanced Powder Technology, 2015, 26, 901-906.	4.1	5
28	Lowâ€Cost Silicon Nitride from βâ€Silicon Nitride Powder and by Lowâ€Temperature Sintering. International Journal of Applied Ceramic Technology, 2015, 12, 377-382.	2.1	8
29	Joining of alumina with an alumina–zirconia insert under low mechanical pressure. Journal of Asian Ceramic Societies, 2015, 3, 59-63.	2.3	5
30	Joining of Silicon Nitride by Local Heating for Fabrication of Long Ceramic Pipes. International Journal of Applied Ceramic Technology, 2014, 11, 164-171.	2.1	6
31	Joining strength characteristics of large silicon nitride block joined without using any insert material. Journal of the Ceramic Society of Japan, 2014, 122, 171-174.	1.1	0
32	Effect of joining conditions on microstructure and flexural strength of long silicon nitride pipes fabricated by local heat-joining technique. Journal of Asian Ceramic Societies, 2013, 1, 308-313.	2.3	3
33	Energy efficient synthesis of porous ZrO2 with fine closed pores by microwave irradiation. Materials Letters, 2013, 93, 293-296.	2.6	5
34	Silicon carbide coating of the aluminum joined boron carbide by using polycarbosilane. Materials Letters, 2013, 112, 8-11.	2.6	5
35	Review and Overview of Silicon Nitride and SiAlON, Including their Applications. , 2013, , 245-266.		4
36	Fabrication and characterization of porous ZrO2 with a high volume fraction of fine closed pores. Journal of the European Ceramic Society, 2013, 33, 61-66.	5.7	11

#	Article	IF	CITATIONS
37	Joining of alumina by using polycarbosilane and aluminum foil. Journal of the Ceramic Society of Japan, 2012, 120, 138-142.	1.1	5
38	Semi-homogeneous joining of silicon nitride using oxynitride glass insert containing silicon nitride powder and post-heat treatment. Journal of the Ceramic Society of Japan, 2012, 120, 119-122.	1.1	5
39	Microwave joining of alumina with alumina/zirconia insert under low pressure and high temperature. Journal of the Ceramic Society of Japan, 2012, 120, 362-365.	1.1	1
40	Joining of alumina by using polymer blend method. Journal of the Ceramic Society of Japan, 2012, 120, 408-412.	1.1	3
41	Study of flaws inspection in ceramics materials using UT and X-Ray methods. International Journal of Applied Electromagnetics and Mechanics, 2012, 39, 413-418.	0.6	1
42	Investigation of the properties of SiC membrane on alumina by using polycarbosilane. Materials Letters, 2012, 75, 134-136.	2.6	11
43	Joining of B4C by Al–Si infiltrated TiC tape: Effect of Si content on joint microstructure and corrosion resistance. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 238-242.	5.6	4
44	Joining of SiC by Al infiltrated TiC tape: Effect of joining parameters on the microstructure and mechanical properties. Journal of the European Ceramic Society, 2012, 32, 149-156.	5.7	21
45	Synthesis, microstructure and mechanical properties of reaction-infiltrated TiB2–SiC–Si composites. Journal of Alloys and Compounds, 2011, 509, 1819-1823.	5.5	10
46	Joining of SiC with Si infiltrated tape-cast TiB2–C interlayer: Effect of interlayer composition and thickness on the microstructure and mechanical properties. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 580-584.	5.6	5
47	Semi-homogeneous joining of silicon nitride with a silicon nitride powder insert. Journal of the Ceramic Society of Japan, 2011, 119, 322-324.	1.1	7
48	Study of modification on alumina surface by using of organosilicon polymer. Journal of the Ceramic Society of Japan, 2011, 119, 378-381.	1.1	10
49	Joining of alumina by using organometallic polymer. Journal of the Ceramic Society of Japan, 2011, 119, 658-662.	1.1	6
50	Fabrication of Dense \hat{I}^2 -SiAlON Ceramics with ZrO2 Additions Via a Rapid Reaction-Bonding and Postsintering Route. Journal of the American Ceramic Society, 2011, 94, 1014-1018.	3.8	19
51	Joining of SiC by Tape-Cast SiC-Al ₂ O ₃ -Y ₂ O ₃ Interlayer. Key Engineering Materials, 2011, 484, 26-31.	0.4	1
52	Evaluation of joined silicon nitride by X-ray computed tomography (X-ray CT). Journal of the Ceramic Society of Japan, 2010, 118, 1192-1194.	1.1	1
53	Effect of composition and joining parameters on microstructure and mechanical properties of silicon carbide joints. Journal of the Ceramic Society of Japan, 2010, 118, 799-804.	1.1	5
54	Joining of silicon nitride with silicon slurry via reaction bonding and post sintering. Journal of the Ceramic Society of Japan, 2010, 118, 9-12.	1.1	12

#	Article	IF	CITATIONS
55	Joining of silicon nitride by microwave local heating. Journal of the Ceramic Society of Japan, 2010, 118, 959-962.	1.1	18
56	Joining of Silicon Nitride by Slurry or Paste. Ceramic Engineering and Science Proceedings, 2010, , 131-134.	0.1	0
57	Reaction joining of SiC ceramics using TiB2-based composites. Journal of the European Ceramic Society, 2010, 30, 3203-3208.	5.7	34
58	Synthesis of precursor for fibrous mullite powder by alkoxide hydrolysis method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 66-71.	3.5	18
59	Environmental Impact Evaluation and Rationalization of Ceramics Process on the Basis of Exergy Analysis. Materials Science Forum, 2010, 654-656, 1982-1985.	0.3	0
60	Fabrication of pressureless sintered dense \hat{l}^2 -SiAlON via a reaction-bonding route with ZrO2 addition. Ceramics International, 2009, 35, 1927-1932.	4.8	28
61	Nitridation behaviour of ZrO2 added silicon powder with different ZrO2 particle sizes. Journal of the Ceramic Society of Japan, 2009, 117, 157-161.	1.1	10
62	A rationalization guideline for the utilization of energy and resources considering total manufacturing processes. Synthesiology, 2009, 1, 199-208.	0.2	3
63	Stereo fabric modeling technology in ceramics manufacture. Journal of the European Ceramic Society, 2008, 28, 1079-1083.	5.7	16
64	Exergy Consumption Through the Life Cycle of Ceramic Parts. International Journal of Applied Ceramic Technology, 2008, 5, 373-381.	2.1	12
65	Nitridation enhancing effect of ZrO2 on silicon powder. Materials Letters, 2008, 62, 3475-3477.	2.6	38
66	Influence of zirconia addition on reaction bonded silicon nitride produced from various silicon particle sizes. Journal of the Ceramic Society of Japan, 2008, 116, 688-693.	1.1	19
67	Title is missing!. Synthesiology, 2008, 1, 212-221.	0.2	4
68	Improvement of Oxidation Resistance of Graphite Powder Treated with Phosphate. Key Engineering Materials, 2007, 352, 133-136.	0.4	2
69	Effect of Diluents on Post-Reaction Sintering of Silicon Nitride Ceramics. Key Engineering Materials, 2007, 352, 185-188.	0.4	4
70	Fabrication and Wettability Test of Silicon Nitrides with Ordered Protrusions. Solid State Phenomena, 2007, 127, 173-178.	0.3	0
71	Expansion of Silicon Nitride-Boron Nitride Composite by Reaction Bonding. Journal of the Ceramic Society of Japan, 2007, 115, 147-150.	1.3	0
72	Fabrication of Thick Silicon Nitride by Reaction Bonding and Post-Sintering. Journal of the Ceramic Society of Japan, 2007, 115, 285-289.	1.3	9

#	Article	IF	Citations
73	Exergy Analysis on the Ceramic Manufacturing Process. Journal of the Ceramic Society of Japan, 2007, 115, 987-992.	1.1	6
74	Effect of Green Machining on Strength of Silicon Nitride with As-Sintered Surface. Journal of the Ceramic Society of Japan, 2007, 115, 504-506.	1.1	2
75	Reaction sintering of two-dimensional silicon carbide fiber-reinforced silicon carbide composite by sheet stacking method. Journal of Nuclear Materials, 2007, 367-370, 769-773.	2.7	8
76	Reaction sintering of \hat{l}^2 -tricalcium phosphates and their mechanical properties. Journal of the European Ceramic Society, 2007, 27, 3215-3220.	5.7	14
77	Effect of Yb2O3 Addition on Si3N4-Lu2O3-SiO2 Ceramics. Journal of the Ceramic Society of Japan, 2006, 114, 1097-1099.	1.3	2
78	Substitution Model of Monovalent (Li, Na, and K), Divalent (Mg), and Trivalent (Al) Metal Ions for beta-Tricalcium Phosphate. Journal of the American Ceramic Society, 2006, 89, 688-690.	3.8	92
79	The Anisotropic Properties of the Tape Cast Si₃N₄ Ceramics with Rod-Like \hat{I}^2 -Si₃N₄ Seeds Addition. Key Engineering Materials, 2006, 317-318, 593-596.	0.4	2
80	Strengthening Effect of In-Situ Dispersed Hexagonal Boron Nitride in Ceramic Composites. Key Engineering Materials, 2006, 317-318, 163-166.	0.4	1
81	In-Situ Formation and Coating of Cordierite Whiskers on Cordierite Based Honeycomb Support. Key Engineering Materials, 2006, 317-318, 701-704.	0.4	0
82	Water vapor corrosion of mullite containing small amount of sodium. Ceramics International, 2005, 31, 177-180.	4.8	22
83	Synthesis of Porous Si3N4 Ceramics with Rod-Shaped Pore Structure. Journal of the American Ceramic Society, 2005, 88, 1030-1032.	3.8	42
84	Fracture Energies of Tape-Cast Silicon Nitride with beta-Si3N4 Seed Addition. Journal of the American Ceramic Society, 2005, 88, 1622-1624.	3.8	15
85	Effect of Substitutional Monovalent and Divalent Metal lons on Mechanical Properties of βâ€Tricalcium Phosphate. Journal of the American Ceramic Society, 2005, 88, 2315-2318.	3.8	37
86	Reactive Hot-Pressed Alumina-Boron Nitride Composites with Y2O3 Sintering Additive. Journal of the American Ceramic Society, 2005, 88, 2246-2248.	3.8	15
87	Development of a Novel Design for Diesel Particulate Filter. Journal of Porous Materials, 2005, 12, 47-53.	2.6	4
88	Bending Strength of the Seeded and Tape Cast Si ₃ N ₄ before and after Oxidation Exposure in Air at 1500°C. Key Engineering Materials, 2005, 287, 483-488.	0.4	0
89	Development of EBC for Silicon Nitride. Key Engineering Materials, 2005, 287, 449-456.	0.4	14
90	Fabrication and Properties of the Tape-Cast Si ₃ N ₄ with Rod-Like Si ₃ N ₄ Seed Addition. Key Engineering Materials, 2005, 280-283, 1219-1222.	0.4	0

#	Article	IF	Citations
91	High Strength and High Toughness Anisotropic Silicon Nitrides Fabricated by Forging Technique. Key Engineering Materials, 2005, 280-283, 1213-1218.	0.4	1
92	Corrosion behavior of Al2O3in static state water vapor environment at high temperature. Journal of Materials Science, 2004, 39, 6627-6629.	3.7	7
93	High-temperature water vapor corrosion behavior of Lu4Hf3O12 phase. Ceramics International, 2004, 30, 865-867.	4.8	4
94	Carbon dioxide absorption mechanisms of sodium added to calcium oxide at high temperatures. Ceramics International, 2004, 30, 1031-1034.	4.8	6
95	Lutetium Disilicate Coating on Silicon Nitride for High Temperature Oxidation Resistance. Journal of the Ceramic Society of Japan, 2004, 112, 301-304.	1.3	8
96	Fabrication and Mechanical Properties of Porous Anisotropic Silicon Nitride with Lutetia Additive. Journal of the Ceramic Society of Japan, 2004, 112, 316-320.	1.3	6
97	Oxidation Resistance and Strength Retention of Silicon Nitride Coated with Lutetium Disilicate. Journal of the Ceramic Society of Japan, 2004, 112, 388-394.	1.3	2
98	Anisotropic Behavior of Water Vapor Corrosion of Rutile TiO ₂ at High Temperature. Materials Transactions, 2004, 45, 281-283.	1.2	8
99	Uniformly Porous Composites with 3â€D Network Structure (UPCâ€3D) for Highâ€Temperature Filter Applications. International Journal of Applied Ceramic Technology, 2004, 1, 76-85.	2.1	18
100	High-temperature mechanical properties of sinter-forged silicon nitride with ytterbia additive. Journal of the European Ceramic Society, 2003, 23, 809-815.	5.7	33
101	Thermal Shock Behavior of Isotropic and Anisotropic Porous Silicon Nitride. Journal of the American Ceramic Society, 2003, 86, 738-40.	3.8	58
102	Porous 2Hâ€Silicon Carbide Ceramics Fabricated by Carbothermal Reaction between Silicon Nitride and Carbon. Journal of the American Ceramic Society, 2003, 86, 910-914.	3.8	29
103	Reactive Synthesis of a Porous Calcium Zirconate/Spinel Composite with Idiomorphic Spinel Grains. Journal of the American Ceramic Society, 2003, 86, 1128-1131.	3.8	31
104	Highâ€Temperature Strength of Sinterâ€Forged Silicon Nitride with Lutetia Additive. Journal of the American Ceramic Society, 2003, 86, 1430-1432.	3.8	20
105	Strength of Silicon Nitride after Thermal Shock. Journal of the American Ceramic Society, 2003, 86, 1619-1621.	3.8	7
106	Porous Alumina at the Nanolevel. Materials Science Forum, 2003, 442, 55-60.	0.3	0
107	High-Strength Porous Silicon Nitride Fabricated by Partial Sinter-Forging. Key Engineering Materials, 2003, 247, 219-222.	0.4	1
108	Highly Porous Silicon-Based Ceramics Fabricated with Restrained Sintering by Reaction Bonding (RSRB). Key Engineering Materials, 2003, 247, 227-230.	0.4	0

#	Article	IF	CITATIONS
109	Noble Preparation Route for Combustion Catalyst from .BETAAl2O3/LaAlO3 Eutectic. Journal of the Ceramic Society of Japan, 2003, 111, 611-613.	1.3	1
110	High Temperature Mechanical Properties of Partially Sinter-Forged Porous Anisotropic Silicon Nitride. Journal of the Ceramic Society of Japan, 2003, 111, 285-287.	1.3	2
111	High Temperature Water Vapor Corrosion Behavior of Titanium Aluminate (Al2TiO5). Journal of the Ceramic Society of Japan, 2003, 111, 860-862.	1.3	7
112	High Temperature Hydro Corrosion Resistance of Silica Based Oxide Ceramics., 2003,, 625.		8
113	In Situ Synthesis and Microstructure of Dense CaAl ₄ O ₇ Monolith and CaAl ₄ O ₇ /CaZrO ₃ Composite. Key Engineering Materials, 2002, 206-213, 977-980.	0.4	2
114	Fracture Behavior of Porous Silicon Nitrides. Key Engineering Materials, 2002, 223, 91-96.	0.4	0
115	Effect of In-doping on the microstructure and CH4-sensing ability of porous CaZrO3/MgO composites. Journal of the European Ceramic Society, 2002, 22, 1177-1182.	5.7	11
116	Fabrication of porous anisotropic silicon nitride by using partial sinter-forging technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 26-31.	5.6	23
117	Synthesis and properties of porous Si3N4/SiC nanocomposites by carbothermal reaction between Si3N4 and carbon. Acta Materialia, 2002, 50, 4831-4840.	7.9	49
118	High performance porous silicon nitrides. Journal of the European Ceramic Society, 2002, 22, 2489-2494.	5.7	73
119	Highâ€Strength Porous Silicon Carbide Ceramics by an Oxidationâ€Bonding Technique. Journal of the American Ceramic Society, 2002, 85, 2852-2854.	3.8	110
120	In Situ Synthesis and Microstructure of Porous CaAl4O7 Monolith and CaAl4O7/CaZrO3 Composite Journal of the Ceramic Society of Japan, 2001, 109, 205-209.	1.3	15
121	CH4-Sensing and High-Temperature Mechanical Properties of Porous CaZrO3/MgO Composites with Three-Dimensional Network Structure Journal of the Ceramic Society of Japan, 2001, 109, 79-81.	1.3	18
122	Effects of SiC Addition on Microstructure of Porous CazrO3/MgO Composites Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48, 335-340.	0.2	2
123	Porous silicon nitride-based ceramics fabricated from silicon and carbon powders. Journal of Materials Science Letters, 2001, 20, 461-463.	0.5	7
124	<i>In Situ</i> Processing of a Porous Calcium Zirconate/Magnesia Composite with Platinum Nanodispersion and Its Influence on Nitric Oxide Decomposition. Journal of the American Ceramic Society, 2001, 84, 2713-2715.	3.8	13
125	High-strength porous silicon nitride fabricated by the sinter-forging technique. Journal of Materials Research, 2001, 16, 32-34.	2.6	31
126	Superplastic Tensile Behavior of Silicon Nitride. Materials Science Forum, 2001, 357-359, 183-186.	0.3	0

#	Article	IF	Citations
127	Improved creep resistance in anisotropic silicon nitride. Journal of Materials Research, 2001, 16, 2182-2185.	2.6	11
128	Highâ€Temperature Fracture Energy of Superplastically Forged Silicon Nitride. Journal of the American Ceramic Society, 2001, 84, 1791-1796.	3.8	17
129	Middle Stage Heat Treatment for Microstructure Control of Reaction-Bonded Silicon Nitride-Silicon Carbide Composite Journal of the Ceramic Society of Japan, 2000, 108, 445-448.	1.3	2
130	Enhanced Magnetization of 3 mol% Yttriaâ€Doped Zirconia/Barium Hexaferrite by Postâ€Plastic Deformation. Journal of the American Ceramic Society, 2000, 83, 1113-1116.	3.8	5
131	<i>In Situ</i> Formation of Hexaferrite Magnets within a 3Yâ€₹ZP Matrix: La ₂ O ₃ –ZnO–Fe ₂ O ₃ and BaO–Fe ₂ O ₃ Systems. Journal of the American Ceramic Society, 2000, 83, 1346-1350.	3.8	5
132	Reactionâ€Bonded and Superplastically Sinterâ€Forged Silicon Nitride–Silicon Carbide Nanocomposites. Journal of the American Ceramic Society, 2000, 83, 1816-1818.	3.8	10
133	Reactive Hot Pressing of ZrB ₂ –SiC Composites. Journal of the American Ceramic Society, 2000, 83, 2330-2332.	3.8	248
134	Microstructures and Mechanical Properties of Anisotropic Silicon Nitride Produced by Superplastic Deformation. Key Engineering Materials, 1999, 161-163, 555-558.	0.4	1
135	Superplastic Deformation of Silicon Nitride Ceramics. Key Engineering Materials, 1999, 166, 109-116.	0.4	0
136	Change in stress, stress sensitivity and activation energy during superplastic deformation of silicon nitride. Materials Science & Degraphic Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 268, 141-146.	5.6	5
137	Preparation and Characterization of Fineâ€Grained 3Yâ€₹ZP/BaFe ₁₂ O ₁₉ In Situ Composites. Journal of the American Ceramic Society, 1999, 82, 2557-2559.	3.8	13
138	Superplastic Sinterâ€Forging of Silicon Nitride with Anisotropic Microstructure Formation. Journal of the American Ceramic Society, 1999, 82, 1067-1069.	3.8	68
139	Ceramics superplasticity. Current Opinion in Solid State and Materials Science, 1999, 4, 461-465.	11.5	40
140	Grain bridging of highly anisotropic silicon nitride. Materials Letters, 1999, 40, 5-10.	2.6	7
141	Fracture toughness of multilayer silicon nitride with crack deflection. Materials Letters, 1999, 40, 280-284.	2.6	4
142	Effects of Plastic Deformation on Microstructure and Magnetic Properties of 3Y-TZP/Ba-M Type Ferrite Composite Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 604-609.	0.2	7
143	Vickers Indentation Crack in Superplastically Compressive Deformed Silicon Nitride with Highly Anisotropic Microstructure Journal of the Ceramic Society of Japan, 1999, 107, 300-302.	1.3	1
144	Effect of .ALPHAPhase on Superplastic Behavior of Silicon Nitride Journal of the Ceramic Society of Japan, 1999, 107, 388-390.	1.3	3

#	Article	IF	CITATIONS
145	Geometrical Microstructural Development in Superplastic Silicon Nitride with Rod-Shaped Grains. Journal of the American Ceramic Society, 1998, 81, 3221-3227.	3.8	29
146	Indentation cracks in superplastically deformed silicon nitride consisting of strongly aligned rod-shaped grains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 244, 161-167.	5 . 6	3
147	Deformation Conditions of \hat{l}^2 -SiAlON to Achieve Large Superplastic Elongation. Journal of the Ceramic Society of Japan, 1998, 106, 1040-1042.	1.3	6
148	Strengthening and Toughening of Silicon Nitride by Superplastic Deformation. Journal of the American Ceramic Society, 1998, 81, 713-716.	3.8	51
149	Superplasticity in Si ₃ N ₄ Associated with Rod-like Grain Alignment. Materials Science Forum, 1997, 243-245, 115-124.	0.3	0
150	Amorphous Grain Boundary in Superplastic Ceramics. Materials Science Forum, 1997, 243-245, 337-344.	0.3	3
151	Superplastic forging of silicon nitride ceramics with anisotropic microstructure control. Journal of Materials Science Letters, 1997, 17, 45-47.	0.5	11
152	Ceramics superplasticity: Deformation mechanisms and microstructures. Materials Characterization, 1996, 37, 331-341.	4.4	22
153	High temperature deformation of silicon nitride ceramics with different microstructures. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 45-48.	5.6	20
154	Crack formation and oxidation in superplastically deformed Si3N4. Journal of Materials Science, 1996, 31, 5499-5504.	3.7	2
155	Particle size, shape and orientation distributions: Aeneral spheroid problem and application to deformed Si3N4microstructures. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 215-228.	0.6	8
156	Superplastic Si3N4 ceramics consisting of rod-shaped grains. Journal of Materials Science Letters, 1995, 14, 1369-1371.	0.5	31
157	Atomic Configuration in Bainite of a Cu ₄₅ Zn ₄₀ Au ₁₅ Alloy Examined by ALCHEMI. European Physical Journal Special Topics, 1995, 05, C8-985-C8-990.	0.2	1
158	Sintering Shrinkage Behavior of Si ₃ N ₄ Ceramics Prepared by a Post-Reaction Sintering Technique. Key Engineering Materials, 0, 403, 31-34.	0.4	0
159	Exergy Analysis on the Life Cycle of Ceramic Parts. Key Engineering Materials, 0, 403, 261-264.	0.4	2
160	Development of EBC for Silicon Nitride. Key Engineering Materials, 0, , 449-456.	0.4	2
161	Evaluation of Ceramic Materials and Joints using UT and X-Ray. Ceramic Engineering and Science Proceedings, 0, , 47-55.	0.1	0
162	Anisotropic Porous Silicon Nitride Fabricated by Partial Forging Technique. Ceramic Engineering and Science Proceedings, 0, , 177-182.	0.1	0