## Carolyn M Teschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/679500/publications.pdf Version: 2024-02-01



CAPOLYN M TESCHKE

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pulseâ€field gradient nuclear magnetic resonance of protein translational diffusion from native to<br><scp>nonâ€native</scp> states. Protein Science, 2022, 31, e4321. | 7.6  | 7         |
| 2  | Tryptophan Residues Are Critical for Portal Protein Assembly and Incorporation in Bacteriophage P22.<br>Viruses, 2022, 14, 1400.                                       | 3.3  | 2         |
| 3  | Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins. Viruses, 2021, 13, 1504.                                                     | 3.3  | 3         |
| 4  | Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins. Viruses, 2020, 12, 1163.                                                    | 3.3  | 15        |
| 5  | Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and<br>Herpesviruses. Annual Review of Virology, 2019, 6, 141-160.             | 6.7  | 64        |
| 6  | NMR Mapping of Disordered Segments from a Viral Scaffolding Protein Enclosed in a 23 MDa<br>Procapsid. Biophysical Journal, 2019, 117, 1387-1392.                      | 0.5  | 5         |
| 7  | Of capsid structure and stability: The partnership between charged residues of E-loop and P-domain of the bacteriophage P22 coat protein. Virology, 2019, 534, 45-53.  | 2.4  | 6         |
| 8  | A Hydrophobic Network: Intersubunit and Intercapsomer Interactions Stabilizing the Bacteriophage<br>P22 Capsid. Journal of Virology, 2019, 93, .                       | 3.4  | 8         |
| 9  | The amazing HK97 fold: versatile results of modest differences. Current Opinion in Virology, 2019, 36,<br>9-16.                                                        | 5.4  | 80        |
| 10 | Conservation and Divergence of the I-Domain Inserted into the Ubiquitous HK97 Coat Protein Fold in<br>P22-Like Bacteriophages. Journal of Virology, 2019, 93, .        | 3.4  | 4         |
| 11 | Architect of Virus Assembly: the Portal Protein Nucleates Procapsid Assembly in Bacteriophage P22.<br>Journal of Virology, 2019, 93, .                                 | 3.4  | 12        |
| 12 | The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy.<br>ELife, 2019, 8, .                                                 | 6.0  | 11        |
| 13 | NMR assignments for monomeric phage L decoration protein. Biomolecular NMR Assignments, 2018, 12, 339-343.                                                             | 0.8  | 2         |
| 14 | Lessons from bacteriophages part 2: A saga of scientific breakthroughs and prospects for their use in human health. PLoS Pathogens, 2018, 14, e1006970.                | 4.7  | 7         |
| 15 | Lessons from bacteriophages part 1: Deriving utility from protein structure, function, and evolution.<br>PLoS Pathogens, 2018, 14, e1006971.                           | 4.7  | 8         |
| 16 | Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nature Communications, 2017, 8, 14310.                   | 12.8 | 90        |
| 17 | NMR assignments for the insertion domain of bacteriophage Sf6 coat protein. Biomolecular NMR Assignments, 2017, 11, 35-38.                                             | 0.8  | 1         |
| 18 | A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. Science Advances, 2017, 3, e1700423.                     | 10.3 | 36        |

CAROLYN M TESCHKE

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Measurement of the accurate mass of a 50ÂMDa infectious virus. Rapid Communications in Mass<br>Spectrometry, 2016, 30, 1957-1962.                                                                                             | 1.5  | 46        |
| 20 | Localization of the Houdinisome (Ejection Proteins) inside the Bacteriophage P22 Virion by Bubblegram<br>Imaging. MBio, 2016, 7, .                                                                                            | 4.1  | 27        |
| 21 | Contextual Role of a Salt Bridge in the Phage P22 Coat Protein I-Domain. Journal of Biological<br>Chemistry, 2016, 291, 11359-11372.                                                                                          | 3.4  | 4         |
| 22 | Acquiring Structural Information on Virus Particles with Charge Detection Mass Spectrometry.<br>Journal of the American Society for Mass Spectrometry, 2016, 27, 1028-1036.                                                   | 2.8  | 42        |
| 23 | Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea<br>Binding. Biophysical Journal, 2015, 109, 2666-2677.                                                                          | 0.5  | 15        |
| 24 | NMR assignments for the insertion domain of bacteriophage CUS-3 coat protein. Biomolecular NMR Assignments, 2015, 9, 333-336.                                                                                                 | 0.8  | 5         |
| 25 | A method to investigate protein association with intact sealed mycobacterial membrane vesicles.<br>Analytical Biochemistry, 2015, 485, 109-111.                                                                               | 2.4  | 0         |
| 26 | Nature׳s favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology, 2015, 479-480, 487-497.                                                                                   | 2.4  | 92        |
| 27 | A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important<br>Intercapsomer Contacts Required for Procapsid Assembly. Journal of Virology, 2015, 89, 10569-10579.                           | 3.4  | 17        |
| 28 | ADP-dependent Conformational Changes Distinguish Mycobacterium tuberculosis SecA2 from SecA1.<br>Journal of Biological Chemistry, 2014, 289, 2307-2317.                                                                       | 3.4  | 11        |
| 29 | Highly Specific Salt Bridges Govern Bacteriophage P22 Icosahedral Capsid Assembly: Identification of the Site in Coat Protein Responsible for Interaction with Scaffolding Protein. Journal of Virology, 2014, 88, 5287-5297. | 3.4  | 24        |
| 30 | Multiple Functional Roles of the Accessory I-Domain of Bacteriophage P22 Coat Protein Revealed by NMR Structure and CryoEM Modeling. Structure, 2014, 22, 830-841.                                                            | 3.3  | 40        |
| 31 | An Intramolecular Chaperone Inserted in Bacteriophage P22 Coat Protein Mediates Its<br>Chaperonin-independent Folding. Journal of Biological Chemistry, 2013, 288, 33772-33783.                                               | 3.4  | 14        |
| 32 | NMR assignments for the telokin-like domain of bacteriophage P22 coat protein. Biomolecular NMR<br>Assignments, 2013, 7, 257-260.                                                                                             | 0.8  | 7         |
| 33 | Themes and Variations of Viral Small Terminase Proteins. Structure, 2012, 20, 1291-1292.                                                                                                                                      | 3.3  | 5         |
| 34 | Unraveling the Role of the C-terminal Helix Turn Helix of the Coat-binding Domain of Bacteriophage<br>P22 Scaffolding Protein. Journal of Biological Chemistry, 2012, 287, 33766-33780.                                       | 3.4  | 26        |
| 35 | Stepwise molecular display utilizing icosahedral and helical complexes of phage coat and decoration proteins in the development of robust nanoscale display vehicles. Biomaterials, 2012, 33, 5628-5637.                      | 11.4 | 35        |
| 36 | The energetic contributions of scaffolding and coat proteins to the assembly of bacteriophage procapsids. Virology, 2012, 428, 64-69.                                                                                         | 2.4  | 17        |

CAROLYN M TESCHKE

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Conformational Changes in Bacteriophage P22 Scaffolding Protein Induced by Interaction with Coat<br>Protein. Journal of Molecular Biology, 2011, 410, 226-240.                                             | 4.2 | 17        |
| 38 | Bacteriophage P22 capsid size determination: Roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus. Virology, 2011, 417, 418-429.                                      | 2.4 | 24        |
| 39 | Decoding bacteriophage P22 assembly: Identification of two charged residues in scaffolding protein responsible for coat protein interaction. Virology, 2011, 421, 1-11.                                    | 2.4 | 40        |
| 40 | P22 Coat Protein Structures Reveal a Novel Mechanism for Capsid Maturation: Stability without Auxiliary Proteins or Chemical Crosslinks. Structure, 2010, 18, 390-401.                                     | 3.3 | 136       |
| 41 | †Let the phage do the work': Using the phage P22 coat protein structures as a framework to<br>understand its folding and assembly mutants. Virology, 2010, 401, 119-130.                                   | 2.4 | 78        |
| 42 | Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching. Molecular Microbiology, 2010, 77, 1568-1582.                                       | 2.5 | 28        |
| 43 | Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins. Physical Biology, 2010, 7, 045004.                                            | 1.8 | 29        |
| 44 | ATPase Activity of <i>Mycobacterium tuberculosis</i> SecA1 and SecA2 Proteins and Its Importance for SecA2 Function in Macrophages. Journal of Bacteriology, 2008, 190, 4880-4887.                         | 2.2 | 50        |
| 45 | Phage P22 Procapsids Equilibrate with Free Coat Protein Subunits. Journal of Molecular Biology, 2007, 365, 513-522.                                                                                        | 4.2 | 34        |
| 46 | Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching. Molecular Microbiology, 2007, 65, 1300-1310.                                                     | 2.5 | 29        |
| 47 | GroEL/S substrate specificity based on substrate unfolding propensity. Cell Stress and Chaperones, 2007, 12, 20.                                                                                           | 2.9 | 6         |
| 48 | Quantitative Analysis of Multi-component Spherical Virus Assembly: Scaffolding Protein Contributes<br>to the Global Stability of Phage P22 Procapsids. Journal of Molecular Biology, 2006, 359, 1097-1106. | 4.2 | 48        |
| 49 | Molecular Glue to Cement a Phage. Structure, 2006, 14, 803-804.                                                                                                                                            | 3.3 | Ο         |
| 50 | Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly. Virology, 2005, 340, 33-45.                                                                          | 2.4 | 55        |
| 51 | A Concerted Mechanism for the Suppression of a Folding Defect through Interactions with Chaperones. Journal of Biological Chemistry, 2004, 279, 17473-17482.                                               | 3.4 | 8         |
| 52 | A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo. Molecular Microbiology, 2004, 54, 1036-1050.                     | 2.5 | 19        |
| 53 | SecA Folding Kinetics: A Large Dimeric Protein Rapidly Forms Multiple Native States. Journal of Molecular Biology, 2004, 341, 199-214.                                                                     | 4.2 | 15        |
| 54 | Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties. Virology, 2003, 313, 184-197.                                                                                            | 2.4 | 27        |

CAROLYN M TESCHKE

| #  | ARTICLE                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Rapid Unfolding of a Domain Populates an Aggregation-prone Intermediate that can be Recognized by<br>GroEL. Journal of Molecular Biology, 2003, 332, 937-951.                                                      | 4.2 | 13        |
| 56 | Penton Release from P22 Heat-Expanded Capsids Suggests Importance of Stabilizing Penton-Hexon<br>Interactions during Capsid Maturation. Biophysical Journal, 2003, 84, 2585-2592.                                  | 0.5 | 88        |
| 57 | Alleviation of a Defect in Protein Folding by Increasing the Rate of Subunit Assembly. Journal of<br>Biological Chemistry, 2001, 276, 25372-25377.                                                                 | 3.4 | 8         |
| 58 | Folding Defects Caused by Single Amino Acid Substitutions in a Subunit Are Not Alleviated by<br>Assemblyâ€. Biochemistry, 2000, 39, 1142-1151.                                                                     | 2.5 | 15        |
| 59 | GroEL binds a late folding intermediate of phage P22 coat protein. Cell Stress and Chaperones, 2000, 5, 163.                                                                                                       | 2.9 | 10        |
| 60 | Single Amino Acid Substitutions Globally Suppress the Folding Defects of Temperature-sensitive<br>Folding Mutants of Phage P22 Coat Protein. Journal of Biological Chemistry, 1999, 274, 22217-22224.              | 3.4 | 30        |
| 61 | Aggregation and Assembly of Phage P22 Temperature-Sensitive Coat Protein Mutants in Vitro Mimic the<br>in Vivo Phenotype. Biochemistry, 1999, 38, 2873-2881.                                                       | 2.5 | 21        |
| 62 | GroEL and GroES Control of Substrate Flux in the in Vivo Folding Pathway of Phage P22 Coat Protein.<br>Journal of Biological Chemistry, 1998, 273, 27236-27244.                                                    | 3.4 | 24        |
| 63 | The Folded Conformation of Phage P22 Coat Protein Is Affected by Amino Acid Substitutions That Lead to a Cold-Sensitive Phenotype. Biochemistry, 1997, 36, 3971-3980.                                              | 2.5 | 6         |
| 64 | The Chaperonins. Cell Stress and Chaperones, 1997, 2, 72.                                                                                                                                                          | 2.9 | 0         |
| 65 | Interactions between Coat and Scaffolding Proteins of Phage P22 Are Alteredin Vitroby Amino Acid<br>Substitutions in Coat Protein That Cause a Cold-Sensitive Phenotypeâ€. Biochemistry, 1996, 35,<br>14831-14840. | 2.5 | 22        |
| 66 | Inhibition of viral capsid assembly by 1,1'-bis(4-anilinonaphthalene-5-sulfonic acid). Biochemistry, 1993, 32, 10658-10665.                                                                                        | 2.5 | 66        |
| 67 | Folding and assembly of oligomeric proteins in Escherichia coli. Current Opinion in Biotechnology, 1992, 3, 468-473.                                                                                               | 6.6 | 32        |