
Wesley J Cole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794940/publications.pdf

Version: 2024-02-01

WESLEVICOLE

#	Article	IF	CITATIONS
1	Energy-Storage Modeling: State-of-the-Art and Future Research Directions. IEEE Transactions on Power Systems, 2022, 37, 860-875.	4.6	37
2	Exploring the design space of PV-plus-battery system configurations under evolving grid conditions. Applied Energy, 2022, 308, 118339.	5.1	12
3	Planning for the evolution of the electric grid with a long-run marginal emission rate. IScience, 2022, 25, 103915.	1.9	18
4	The prospective impacts of 2019 state energy policies on the U.S. electricity system. Energy Policy, 2021, 149, 112013.	4.2	8
5	The curtailment paradox in the transition to high solar power systems. Joule, 2021, 5, 1143-1167.	11.7	50
6	The evolving energy and capacity values of utility-scale PV-plus-battery hybrid system architectures. Advances in Applied Energy, 2021, 2, 100015.	6.6	40
7	The challenges of achieving a 100% renewable electricity system in the United States. Joule, 2021, 5, 1331-1352.	11.7	99
8	Exploring the cost implications of increased renewable energy for the U.S. power system. Electricity Journal, 2021, 34, 106957.	1.3	18
9	Quantifying the challenge of reaching a 100% renewable energy power system for the United States. Joule, 2021, 5, 1732-1748.	11.7	82
10	Quantifying Risk in an Uncertain Future: The Evolution of Resource Adequacy. IEEE Power and Energy Magazine, 2021, 19, 29-36.	1.6	14
11	Solving a large energy system optimization model using an open-source solver. Energy Strategy Reviews, 2021, 38, 100755.	3.3	4
12	The potential for battery energy storage to provide peaking capacity in the United States. Renewable Energy, 2020, 151, 1269-1277.	4.3	66
13	Assessing the potential of battery storage as a peaking capacity resource in the United States. Applied Energy, 2020, 275, 115385.	5.1	29
14	Considerations for maintaining resource adequacy of electricity systems with high penetrations of PV and storage. Applied Energy, 2020, 279, 115795.	5.1	23
15	The potential for using local PV to meet critical loads during hurricanes. Solar Energy, 2020, 205, 37-43.	2.9	17
16	Energy storage in long-term system models: a review of considerations, best practices, and research needs. Progress in Energy, 2020, 2, 032001.	4.6	21
17	Sunny with a Chance of Curtailment: Operating the US Grid with Very High Levels of Solar Photovoltaics. IScience, 2019, 21, 436-447.	1.9	36
18	Wind and solar PV deployment after tax credits expire: A view from the standard scenarios and the annual energy outlook. Electricity Journal, 2019, 32, 106637.	1.3	18

WESLEY J COLE

#	Article	IF	CITATIONS
19	Inter-annual variability of wind and solar electricity generation and capacity values in Texas. Environmental Research Letters, 2019, 14, 044032.	2.2	19
20	Setting cost targets for zero-emission electricity generation technologies. Applied Energy, 2019, 250, 582-592.	5.1	15
21	The impact of planning reserve margins in long-term planning models of the electricity sector. Energy Policy, 2019, 125, 1-8.	4.2	14
22	Comparing supply and demand models for future photovoltaic power generation in the USA. Progress in Photovoltaics: Research and Applications, 2018, 26, 414-418.	4.4	5
23	Solar on the rise: How cost declines and grid integration shape solar's growth potential in the United States. MRS Energy & Sustainability, 2018, 5, 1.	1.3	6
24	Fire behavior in chaparral–Evaluating flame models with laboratory data. Combustion and Flame, 2018, 191, 500-512.	2.8	15
25	Understanding Inter-Annual Variability of PV Energy Production in the Contiguous United States. , 2018, , .		1
26	Impacts of increasing penetration of renewable energy on the operation of the power sector. Electricity Journal, 2018, 31, 24-31.	1.3	30
27	Valuing variable renewable energy for peak demand requirements. Energy, 2018, 165, 499-511.	4.5	48
28	The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system. Energy Economics, 2018, 76, 313-324.	5.6	56
29	Envisioning a low-cost solar future: Exploring the potential impact of Achieving the SunShot 2030 targets for photovoltaics. Energy, 2018, 155, 690-704.	4.5	27
30	Modeling the value of integrated U.S. and Canadian power sector expansion. Electricity Journal, 2017, 30, 47-59.	1.3	13
31	The impact of retail electricity tariff evolution on solar photovoltaic deployment. Electricity Journal, 2017, 30, 22-28.	1.3	23
32	Assessing the impact of nuclear retirements on the U.S. power sector. Electricity Journal, 2017, 30, 14-21.	1.3	3
33	Supply and Demand Constraints on Future PV Power in the USA. , 2017, , .		1
34	Utility-scale lithium-ion storage cost projections for use in capacity expansion models. , 2016, , .		33
35	A view to the future of natural gas and electricity: An integrated modeling approach. Energy Economics, 2016, 60, 486-496.	5.6	21
36	Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market. Energy, 2016, 113, 52-63.	4.5	75

Wesley J Cole

#	Article	IF	CITATIONS
37	The environmental and public health benefits of achieving high penetrations of solar energy in the United States. Energy, 2016, 113, 472-486.	4.5	71
38	Evaluating the value of high spatial resolution in national capacity expansion models using ReEDS. , 2016, , .		13
39	Interactions of rooftop PV deployment with the capacity expansion of the bulk power system. Applied Energy, 2016, 168, 473-481.	5.1	30
40	Considering the Role of Solar Generation under Rate-Based Targets in the EPA's Proposed Clean Power Plan. Electricity Journal, 2015, 28, 20-28.	1.3	3
41	Turbine inlet cooling with thermal energy storage. International Journal of Energy Research, 2014, 38, 151-161.	2.2	8
42	Experimental and data collection methods for a large-scale smart grid deployment: Methods and first results. Energy, 2014, 65, 462-471.	4.5	71
43	Heating, cooling, and electrical load forecasting for a large-scale district energy system. Energy, 2014, 74, 877-885.	4.5	171
44	Clustering analysis of residential electricity demand profiles. Applied Energy, 2014, 135, 461-471.	5.1	236
45	A multi-objective assessment of the effect of solar PV array orientation and tilt on energy production and system economics. Solar Energy, 2014, 108, 28-40.	2.9	57
46	Building energy model reduction for model predictive control using OpenStudio. , 2013, , .		18
47	Optimal chiller loading in a district cooling system with thermal energy storage. Energy, 2013, 50, 445-453.	4.5	103
48	Improved Large-Scale Process Cooling Operation through Energy Optimization. Processes, 2013, 1, 312-329.	1.3	23
49	Use of model predictive control to enhance the flexibility of thermal energy storage cooling systems. , 2012, , .		13
50	Optimization and advanced control of thermal energy storage systems. Reviews in Chemical Engineering, 2012, 28, .	2.3	46
51	The effects of wind on the flame characteristics of individual leaves. International Journal of Wildland Fire, 2011, 20, 657.	1.0	11