Ultan Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794909/publications.pdf

Version: 2024-02-01

394421 580821 2,239 25 25 19 h-index citations g-index papers 25 25 25 1238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combustion and Flame, 2018, 197, 423-438.	5.2	432
2	An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combustion and Flame, 2015, 162, 315-330.	5.2	364
3	An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame, 2015, 162, 296-314.	5 . 2	270
4	A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combustion and Flame, 2016, 165, 125-136.	5.2	232
5	A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proceedings of the Combustion Institute, 2013, 34, 225-232.	3.9	121
6	Tailor-Made Fuels from Biomass: Potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel, 2016, 167, 106-117.	6.4	111
7	Comprehensive Experimental and Simulation Study of the Ignition Delay Time Characteristics of Binary Blended Methane, Ethane, and Ethylene over a Wide Range of Temperature, Pressure, Equivalence Ratio, and Dilution. Energy & Equivalence Ratio, 34, 8808-8823.	5.1	81
8	Detailed kinetic modeling of dimethoxymethane. Part II: Experimental and theoretical study of the kinetics and reaction mechanism. Combustion and Flame, 2019, 205, 522-533.	5.2	76
9	A Comprehensive Experimental and Simulation Study of Ignition Delay Time Characteristics of Single Fuel C ₁ –C ₂ Hydrocarbons over a Wide Range of Temperatures, Pressures, Equivalence Ratios, and Dilutions. Energy & Fuels, 2020, 34, 3755-3771.	5.1	67
10	An experimental and kinetic modeling study of the pyrolysis and oxidation of n-C3C5 aldehydes in shock tubes. Combustion and Flame, 2015, 162, 265-286.	5.2	59
11	Toward a better understanding of 2-butanone oxidation: Detailed species measurements and kinetic modeling. Combustion and Flame, 2017, 184, 195-207.	5.2	53
12	An experimental and kinetic modeling study of the oxidation of hexane isomers: Developing consistent reaction rate rules for alkanes. Combustion and Flame, 2019, 206, 123-137.	5.2	53
13	A comprehensive experimental and kinetic modeling study of butanone. Combustion and Flame, 2016, 168, 296-309.	5.2	52
14	Detailed kinetic modeling of dimethoxymethane. Part I: Ab initio thermochemistry and kinetics predictions for key reactions. Combustion and Flame, 2018, 189, 433-442.	5.2	48
15	An experimental and theoretical comparison of C3–C5 linear ketones. Proceedings of the Combustion Institute, 2017, 36, 561-568.	3.9	47
16	Oxidation of 2-methylfuran and 2-methylfuran/n-heptane blends: An experimental and modeling study. Combustion and Flame, 2018, 196, 54-70.	5. 2	32
17	Experimental and numerical study of a novel biofuel: 2-Butyltetrahydrofuran. Combustion and Flame, 2017, 178, 257-267.	5. 2	26
18	A laminar flame investigation of 2-butanone, and the combustion-related intermediates formed through its oxidation. Proceedings of the Combustion Institute, 2017, 36, 1175-1183.	3.9	23

#	Article	IF	CITATIONS
19	HÈ®2Â+ÂHÈ®2: High level theory and the role of singlet channels. Combustion and Flame, 2022, 243, 111975.	5.2	23
20	Experimental and kinetic modeling study of the shock tube ignition of a large oxygenated fuel: Tri-propylene glycol mono-methyl ether. Combustion and Flame, 2015, 162, 2916-2927.	5.2	18
21	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mither altimg="si1.gir" overflow="scroll"> <mmi:mover accent="true"><mmi:mrow><mmi:mi mathvariant="normal">H</mmi:mi></mmi:mrow><mmi:mo>Ë™</mmi:mo></mmi:mover> and <mmi "="" "<="" altimg="si2.gif" td=""><td>l:nææh</td><td>18</td></mmi>	l:nææh	18
22	New experimental insights into acetylene oxidation through novel ignition delay times, laminar burning velocities and chemical kinetic modelling. Proceedings of the Combustion Institute, 2019, 37, 583-591.	3.9	16
23	Hot surface pre-ignition in direct-injection spark-ignition engines: Investigations with Tailor-Made Fuels from Biomass. International Journal of Engine Research, 2018, 19, 45-54.	2.3	8
24	Experimental and Numerical Study of Abnormal Combustion in Direct Injection Spark Ignition Engines Using Conventional and Alternative Fuels. Energy & Energy & Society 2019, 33, 5230-5242.	5.1	8
25	Species measurements of the particulate matter reducing additive tri–propylene glycol monomethyl ether. Proceedings of the Combustion Institute, 2019, 37, 1257-1264.	3.9	1