Mireille Alhouayek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794470/publications.pdf

Version: 2024-02-01

47 papers

2,070 citations

279487 23 h-index 243296 44 g-index

49 all docs 49 docs citations

times ranked

49

3400 citing authors

#	Article	IF	CITATIONS
1	COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends in Pharmacological Sciences, 2014, 35, 284-292.	4.0	206
2	Increasing endogenous 2â€arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB Journal, 2011, 25, 2711-2721.	0.2	177
3	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	5.8	144
4	Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17558-17563.	3.3	127
5	High-fat diet feeding differentially affects the development of inflammation in the central nervous system. Journal of Neuroinflammation, 2016, 13, 206.	3.1	126
6	The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity. Trends in Molecular Medicine, 2012, 18, 615-625.	3.5	115
7	Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. International Journal of Pharmaceutics, 2013, 454, 775-783.	2.6	115
8	Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discovery Today, 2014, 19, 1632-1639.	3.2	106
9	<i>N</i> â€Acylethanolamineâ€hydrolyzing acid amidase inhibition increases colon <i>N</i> â€palmitoylethanolamine levels and counteracts murine colitis. FASEB Journal, 2015, 29, 650-661.	0.2	93
10	A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids and Surfaces B: Biointerfaces, 2016, 143, 327-335.	2.5	76
11	Inflammatory Resolution Triggers a Prolonged Phase of Immune Suppression through COX-1/mPGES-1-Derived Prostaglandin E 2. Cell Reports, 2017, 20, 3162-3175.	2.9	69
12	Lysophosphatidylinositols, from Cell Membrane Constituents to GPR55 Ligands. Trends in Pharmacological Sciences, 2018, 39, 586-604.	4.0	68
13	Controlling 2-arachidonoylglycerol metabolism as an anti-inflammatory strategy. Drug Discovery Today, 2014, 19, 295-304.	3.2	48
14	Oxysterol levels and metabolism in the course of neuroinflammation: insights from in vitro and in vivo models. Journal of Neuroinflammation, 2018, 15, 74.	3.1	44
15	Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon-β1a and Circulating Proinflammatory Cytokines in Relapsing–Remitting Multiple Sclerosis. Neurotherapeutics, 2016, 13, 428-438.	2.1	43
16	In Vitro and in Vivo Evaluation of ¹¹ C-Labeled Azetidinecarboxylates for Imaging Monoacylglycerol Lipase by PET Imaging Studies. Journal of Medicinal Chemistry, 2018, 61, 2278-2291.	2.9	41
17	N -acylethanolamine hydrolyzing acid amidase inhibition: tools and potential therapeutic opportunities. Drug Discovery Today, 2018, 23, 1520-1529.	3.2	41
18	N -acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N -acylethanolamine levels and macrophage activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 474-484.	1.2	37

#	Article	IF	Citations
19	Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cellular and Molecular Life Sciences, 2018, 75, 2843-2856.	2.4	34
20	The anti-inflammatory compound palmitoylethanolamide inhibits prostaglandin and hydroxyeicosatetraenoic acid production by a macrophage cell line. Pharmacology Research and Perspectives, 2017, 5, e00300.	1.1	33
21	Cyclosporine A-loaded lipid nanoparticles in inflammatory bowel disease. International Journal of Pharmaceutics, 2016, 503, 196-198.	2.6	26
22	A Mechanistic Study on Nanoparticle-Mediated Glucagon-Like Peptide-1 (GLP-1) Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2016, 13, 4222-4230.	2.3	24
23	Endocannabinoid and Prostanoid Crosstalk inÂPain. Trends in Molecular Medicine, 2019, 25, 882-896.	3.5	24
24	Size Effect on Lipid Nanocapsule-Mediated GLP-1 Secretion from Enteroendocrine L Cells. Molecular Pharmaceutics, 2018, 15, 108-115.	2.3	23
25	The endogenous bioactive lipid prostaglandin D ₂ â€glycerol ester reduces murine colitis <i>via</i> DP1 and PPARγ receptors. FASEB Journal, 2018, 32, 5000-5011.	0.2	22
26	Colitis Alters Oxysterol Metabolism and is Affected by $4\hat{l}^2$ -Hydroxycholesterol Administration. Journal of Crohn's and Colitis, 2019, 13, 218-229.	0.6	21
27	Bioactive lipids in inflammatory bowel diseases – From pathophysiological alterations to therapeutic opportunities. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158854.	1.2	19
28	Lysophosphatidylinositols in inflammation and macrophage activation: Altered levels and anti-inflammatory effects. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1458-1468.	1.2	18
29	25â€Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice. FASEB Journal, 2021, 35, e21514.	0.2	18
30	Prostaglandin D2-glycerol ester decreases carrageenan-induced inflammation and hyperalgesia in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 609-618.	1.2	17
31	The α/βâ€"hydrolase domain 6 inhibitor WWL70 decreases endotoxinâ€induced lung inflammation in mice, potential contribution of 2â€arachidonoylglycerol, and lysoglycerophospholipids. FASEB Journal, 2019, 33, 7635-7646.	0.2	17
32	Post-operative pain in mice is prolonged by diet-induced obesity and rescued by dietary intervention. Brain, Behavior, and Immunity, 2018, 74, 96-105.	2.0	13
33	miRNA profile is altered in a modified EAE mouse model of multiple sclerosis featuring cortical lesions. ELife, 2020, 9, .	2.8	12
34	Dereplication and Quantification of Major Compounds of Convolvulus arvensis L. Extracts and Assessment of Their Effect on LPS-Activated J774 Macrophages. Molecules, 2022, 27, 963.	1.7	11
35	Interferon γ treatment increases endocannabinoid and related <i>N</i> àâ€acylethanolamine levels in T84 human colon carcinoma cells. British Journal of Pharmacology, 2019, 176, 1470-1480.	2.7	9
36	Involvement of CYP1B1 in interferon γâ€induced alterations of epithelial barrier integrity. British Journal of Pharmacology, 2018, 175, 877-890.	2.7	8

#	Article	IF	CITATIONS
37	Altered mRNA Expression of Genes Involved in Endocannabinoid Signalling in Squamous Cell Carcinoma of the Oral Tongue. Cancer Investigation, 2019, 37, 327-338.	0.6	7
38	Role of pannexin-1 in the cellular uptake, release and hydrolysis of anandamide by T84 colon cancer cells. Scientific Reports, 2019, 9, 7622.	1.6	7
39	Effects of tumour necrosis factor $\hat{l}\pm$ upon the metabolism of the endocannabinoid anandamide in prostate cancer cells. PLoS ONE, 2017, 12, e0185011.	1.1	7
40	N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibition, but Not Fatty Acid Amide Hydrolase Inhibition, Prevents the Development of Experimental Autoimmune Encephalomyelitis in Mice. Neurotherapeutics, 2021, 18, 1815-1833.	2.1	6
41	TLR4 receptor expression and function in F11 dorsal root ganglion $\tilde{A}-$ neuroblastoma hybrid cells. Innate Immunity, 2017, 23, 687-696.	1.1	5
42	Effects of <i>R</i> à€flurbiprofen and the oxygenated metabolites of endocannabinoids in inflammatory pain mice models. FASEB Journal, 2021, 35, e21411.	0.2	5
43	Low mRNA expression and activity of monoacylglycerol lipase in human SH-SY5Y neuroblastoma cells. Prostaglandins and Other Lipid Mediators, 2019, 142, 59-67.	1.0	4
44	Effects of orthotopic implantation of rat prostate tumour cells upon components of the N-acylethanolamine and monoacylglycerol signalling systems: an mRNA study. Scientific Reports, 2020, 10, 6314.	1.6	3
45	Pharmacological Aspects of Anandamide and 2-Arachidonoyglycerol as Bioactive Lipids. , 2017, , 616-629.		1
46	Editorialâ€"Special issue of the 7th European workshop on lipid mediators. Prostaglandins and Other Lipid Mediators, 2020, 148, 106421.	1.0	0
47	Inflammatory Resolution Triggers Mononuclear Phagocyte Infiltration, Which through COX-1/mPGES-1 Maintains Immune Tolerance. SSRN Electronic Journal, 0, , .	0.4	O