Ming-Xue Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794086/publications.pdf Version: 2024-02-01

MINC-XUE W/II

#	Article	IF	CITATIONS
1	Construction and Sensing Amplification of Raspberry-Shaped MOF@MOF. Inorganic Chemistry, 2022, 61, 4705-4713.	4.0	13
2	Tunable fluorescence emission based on multi-layered MOF-on-MOF. Dalton Transactions, 2022, 51, 9397-9403.	3.3	7
3	Sparks from different worlds: Collaboration of MOFs and COFs. Coordination Chemistry Reviews, 2021, 430, 213735.	18.8	67
4	A Rising Star from Two Worlds: Collaboration of COFs and ILs. Advanced Functional Materials, 2021, 31, 2104996.	14.9	34
5	On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. Nanoscale, 2021, 13, 4330-4358.	5.6	24
6	Peptideâ€Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small, 2021, 17, e2005578.	10.0	31
7	Core–Shell MOFs@MOFs: Diverse Designability and Enhanced Selectivity. ACS Applied Materials & Interfaces, 2020, 12, 54285-54305.	8.0	84
8	N-doped carbon dots covalently functionalized with pillar[5]arenes for Fe3+ sensing. Beilstein Journal of Organic Chemistry, 2019, 15, 1262-1267.	2.2	14
9	A fluorescent pillarene coordination polymer. Polymer Chemistry, 2019, 10, 2980-2985.	3.9	38
10	Multistimuli Responsive Core–Shell Nanoplatform Constructed from Fe ₃ O ₄ @MOF Equipped with Pillar[6]arene Nanovalves. Small, 2018, 14, e1704440.	10.0	156
11	Nanoflower-Shaped Biocatalyst with Peroxidase Activity Enhances the Reversible Addition–Fragmentation Chain Transfer Polymerization of Methacrylate Monomers. Macromolecules, 2018, 51, 716-723.	4.8	14
12	Polymer Nanoassembly as Delivery Systems and Antiâ€Bacterial Toolbox: From PGMAs to MSN@PGMAs. Chemical Record, 2018, 18, 45-54.	5.8	25
13	Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 34655-34663.	8.0	105
14	Metal–OrganicÂFramework (MOF)â€Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials, 2017, 29, 1606134.	21.0	1,633
15	Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chinese Chemical Letters, 2017, 28, 1135-1143.	9.0	198
16	Preparation of a porous aromatic framework via the Chan-Lam reaction: a coating for solid-phase microextraction of antioxidants and preservatives. Mikrochimica Acta, 2017, 184, 4409-4416.	5.0	13
17	Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction. Talanta, 2016, 161, 350-358.	5.5	85
18	Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits. Journal of Chromatography A, 2016, 1456, 34-41.	3.7	120

#	Article	IF	CITATIONS
19	Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. Analyst, The, 2016, 141, 243-250.	3.5	56
20	A series of novel Cu-based MOFs: syntheses, structural diversity, catalytic properties and mimic peroxidase activity for colorimetric detection of H2O2. New Journal of Chemistry, 0, , .	2.8	4