
Ivana Matanovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6793922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells. Nature Energy, 2022, 7, 248-259.	19.8	65
2	Highly Durable and Selective Fe- and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO ₂ [–] Pathways. ACS Catalysis, 2022, 12, 6651-6662.	5.5	58
3	Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Applied Catalysis B: Environmental, 2022, 316, 121659.	10.8	11
4	Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells. Nature Materials, 2021, 20, 370-377.	13.3	112
5	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	16.1	368
6	First principles inelastic mean free paths coupled with Monte Carlo simulation of secondary electron yield of Cu-Ni, Cu-Zn, and Mo-Li. Journal of Applied Physics, 2021, 129, .	1.1	8
7	Protocol for rapid ammonia detection via surface-enhanced Raman spectroscopy. STAR Protocols, 2021, 2, 100599.	0.5	0
8	Self-Anchored Platinum-Decorated Antimony-Doped-Tin Oxide as a Durable Oxygen Reduction Electrocatalyst. ACS Catalysis, 2021, 11, 7006-7017.	5.5	17
9	Calculation of Secondary Electron Yield of Alloys: Single Pole Approximation. , 2021, , .		0
10	Energetics of Base–Acid Pairs for the Design of High-Temperature Fuel Cell Polymer Electrolytes. Journal of Physical Chemistry B, 2020, 124, 7725-7734.	1.2	23
11	Towards defect engineering in hexagonal MoS2 nanosheets for tuning hydrogen evolution and nitrogen reduction reactions. Applied Materials Today, 2020, 21, 100812.	2.3	16
12	Facile All-Optical Method for In Situ Detection of Low Amounts of Ammonia. IScience, 2020, 23, 101757.	1.9	12
13	Assessing Stability of Transition Metal Nitrides in Aqueous Environments: The Case of Molybdenum, Iron, Vanadium and Nickel Nitride. Journal of the Electrochemical Society, 2020, 167, 046518.	1.3	7
14	Spectroâ€Electrochemical Microfluidic Platform for Monitoring Multiâ€Step Cascade Reactions. ChemElectroChem, 2019, 6, 246-251.	1.7	10
15	Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nbâ€Đoped TiO 2. ChemSusChem, 2019, 12, 3409-3409.	3.6	0
16	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catalysis, 2019, 9, 7668-7678.	5.5	58
17	Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and ⁵⁷ Fe Mössbauer Spectroscopy. ACS Catalysis, 2019, 9, 9359-9371.	5.5	167
18	Adsorption of Polyaromatic Backbone Impacts the Performance of Anion Exchange Membrane Fuel Cells. Chemistry of Materials, 2019, 31, 4195-4204.	3.2	91

Ινανά Ματανονίς

#	Article	IF	CITATIONS
19	Modular Microfluidic Paperâ€Based Devices for Multiâ€Modal Cascade Catalysis. ChemElectroChem, 2019, 6, 2448-2455.	1.7	8
20	The energetics of phosphoric acid interactions reveals a new acid loss mechanism. Journal of Materials Chemistry A, 2019, 7, 9867-9876.	5.2	83
21	Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nbâ€Doped TiO ₂ . ChemSusChem, 2019, 12, 3468-3480.	3.6	39
22	Thermochemical analysis of Mo-C-H system for synthesis of molybdenum carbides. Thermochimica Acta, 2019, 676, 27-32.	1.2	4
23	Selectivity control for electroreduction of ketones. Nature Catalysis, 2019, 2, 186-187.	16.1	5
24	Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer. ACS Applied Materials & Interfaces, 2019, 11, 9696-9701.	4.0	79
25	Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium. Electrocatalysis, 2018, 9, 480-485.	1.5	20
26	Effect of pH on the Activity of Platinum Group Metal-Free Catalysts in Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 3041-3053.	5.5	158
27	Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study. Physical Chemistry Chemical Physics, 2018, 20, 14679-14687.	1.3	55
28	Inhibition of Surface Chemical Moieties by Tris(hydroxymethyl)aminomethane: A Key to Understanding Oxygen Reduction on Iron–Nitrogen–Carbon Catalysts. ACS Applied Energy Materials, 2018, 1, 1942-1949.	2.5	18
29	Role of Surface Chemistry on Catalyst/Ionomer Interactions for Transition Metal–Nitrogen–Carbon Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 68-77.	2.5	44
30	Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 2018, 9, 137-144.	2.5	85
31	Impact of ionomer adsorption on alkaline hydrogen oxidation activity and fuel cell performance. Current Opinion in Electrochemistry, 2018, 12, 189-195.	2.5	55
32	Mechanism of Oxygen Reduction Reaction on Transition Metal–Nitrogen–Carbon Catalysts: Establishing the Role of Nitrogen-containing Active Sites. ACS Applied Energy Materials, 2018, 1, 5948-5953.	2.5	54
33	Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W cm ^{â^'2} power density. Energy and Environmental Science, 2018, 11, 3283-3291.	15.6	209
34	Surface Adsorption Affects the Performance of Alkaline Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2018, 8, 9429-9439.	5.5	55
35	Cascade Kinetics of an Artificial Metabolon by Molecular Dynamics and Kinetic Monte Carlo. ACS Catalysis, 2018, 8, 7719-7726.	5.5	13
36	Electro-Reduction of Nitrogen on Molybdenum Carbides: A Density Functional Theory Study. ECS Meeting Abstracts, 2018, , .	0.0	0

Ινανά Ματανονίς

#	Article	IF	CITATIONS
37	Oxygen Binding to Active Sites of Fe–N–C ORR Electrocatalysts Observed by Ambient-Pressure XPS. Journal of Physical Chemistry C, 2017, 121, 2836-2843.	1.5	135
38	Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochimica Acta, 2017, 231, 115-124.	2.6	131
39	Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mnâ€Nâ€3Dâ€Graphene Nanosheets. ChemElectroChem, 2017, 4, 2336-2344.	1.7	5
40	Outer membrane cytochromes/flavin interactions in <i>Shewanella</i> spp.—A molecular perspective. Biointerphases, 2017, 12, 021004.	0.6	24
41	Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. Chemical Communications, 2017, 53, 5368-5371.	2.2	23
42	Benzene Adsorption: A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions. Journal of Physical Chemistry Letters, 2017, 8, 4918-4924.	2.1	55
43	Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study. Journal of the Electrochemical Society, 2016, 163, H787-H795.	1.3	4
44	Effect of Organic Cations on Hydrogen Oxidation Reaction of Carbon Supported Platinum. Journal of the Electrochemical Society, 2016, 163, F1503-F1509.	1.3	29
45	Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. Journal of Physical Chemistry C, 2016, 120, 29225-29232.	1.5	123
46	Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell. Electrochimica Acta, 2016, 215, 420-426.	2.6	59
47	Cation–Hydroxide–Water Coadsorption Inhibits the Alkaline Hydrogen Oxidation Reaction. Journal of Physical Chemistry Letters, 2016, 7, 4464-4469.	2.1	57
48	Protein–Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study. Journal of Physical Chemistry B, 2016, 120, 3634-3641.	1.2	24
49	Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants. Journal of Power Sources, 2016, 324, 556-571.	4.0	34
50	Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 612-620.	0.5	5
51	Highly-active Pd–Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels. Applied Catalysis B: Environmental, 2016, 191, 76-85.	10.8	61
52	Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect. Journal of the American Chemical Society, 2015, 137, 7754-7762.	6.6	34
53	Predicting Electrocatalytic Properties: Modeling Structure–Activity Relationships of Nitroxyl Radicals. Journal of the American Chemical Society, 2015, 137, 16179-16186.	6.6	91
54	CuCo ₂ O ₄ ORR/OER Bi-Functional Catalyst: Influence of Synthetic Approach on Performance. Journal of the Electrochemical Society, 2015, 162, F449-F454.	1.3	104

Ινανα Ματανονις

#	Article	IF	CITATIONS
55	Bio-inspired design of electrocatalysts for oxalate oxidation: a combined experimental and computational study of Mn–N–C catalysts. Physical Chemistry Chemical Physics, 2015, 17, 13235-13244.	1.3	26
56	The study of secondary effects in vibrational and hydrogen bonding properties of 2- and 3-ethynylpyridine and ethynylbenzene by IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 215-224.	2.0	10
57	Quinoneâ€Modified Surfaces for Enhanced Enzyme–Electrode Interactions in Pyrroloquinolineâ€Quinoneâ€Dependent Glucose Dehydrogenase Anodes. ChemElectroChem, 2014, 1, 2017-2028.	1.7	14
58	Electro-reduction of nitrogen on molybdenum nitride: structure, energetics, and vibrational spectra from DFT. Physical Chemistry Chemical Physics, 2014, 16, 3014.	1.3	55
59	Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species. Journal of Computational Chemistry, 2014, 35, 1921-1929.	1.5	2
60	Effect of enzymatic orientation through the use of syringaldazine molecules on multiple multi-copper oxidase enzymes. Physical Chemistry Chemical Physics, 2014, 16, 13367-13375.	1.3	39
61	Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Journal of Physical Chemistry C, 2012, 116, 16499-16510.	1.5	18
62	Theoretical Study of Electrochemical Processes on Pt–Ni Alloys. Journal of Physical Chemistry C, 2011, 115, 10640-10650.	1.5	79
63	Fluxionality of Hydrogen Ligands in Fe(H) ₂ (H ₂)(PEtPh ₂) ₃ . Inorganic Chemistry, 2011, 50, 10740-10747.	1.9	15
64	Sulfur Ylide Promoted Synthesis of Nâ€Protected Aziridines: A Combined Experimental and Computational Approach. Chemistry - A European Journal, 2010, 16, 11744-11752.	1.7	23
65	Bergman Cyclization of Acyclic Amino Acid Derived Enediynes Leads to the Formation of 2,3-Dihydrobenzo[f]isoindoles. Journal of Organic Chemistry, 2010, 75, 6219-6228.	1.7	14
66	Methane molecule confined in the small and large cages of structure I clathrate hydrate: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates. Journal of Chemical Physics, 2009, 131, 224308.	1.2	20
67	Generalized approximation to the reaction path: The formic acid dimer case. Journal of Chemical Physics, 2008, 128, 084103.	1.2	26
68	Theoretical modeling of the formic acid dimer infrared spectrum: Shaping the O–H stretch band. Chemical Physics, 2007, 338, 121-126.	0.9	22
69	Supramolecular amide and thioamide synthons in hydrogen bonding patterns of N-aryl-furamides and N-aryl-thiofuramides. Structural Chemistry, 2006, 17, 275-285.	1.0	9
70	Exploring the potential energy surface for proton transfer in acetylacetone. Chemical Physics, 2004, 306, 201-207.	0.9	31