
Christian Krog Tamnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6793825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping Normative Trajectories of Cognitive Function and Its Relation to Psychopathology Symptoms and Genetic Risk in Youth. Biological Psychiatry Global Open Science, 2023, 3, 255-263.	1.0	8
2	In vivo hippocampal subfield volumes in bipolar disorder—A megaâ€analysis from The Enhancing Neuro Imaging Genetics through <scp>Metaâ€Analysis</scp> Bipolar Disorder Working Group. Human Brain Mapping, 2022, 43, 385-398.	1.9	41
3	Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping, 2022, 43, 470-499.	1.9	76
4	Intracranial and subcortical volumes in adolescents with <scp>earlyâ€onset</scp> psychosis: A multisite <scp>megaâ€analysis</scp> from the <scp>ENIGMA</scp> consortium. Human Brain Mapping, 2022, 43, 373-384.	1.9	27
5	What we learn about bipolar disorder from largeâ€scale neuroimaging: Findings and future directions from the <scp>ENIGMA</scp> Bipolar Disorder Working Group. Human Brain Mapping, 2022, 43, 56-82.	1.9	67
6	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 431-451.	1.9	143
7	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 452-469.	1.9	72
8	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA</scp> working groups on <scp>CNVs</scp> . Human Brain Mapping, 2022, 43, 300-328.	1.9	30
9	Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychology Review, 2022, 32, 400-418.	2.5	14
10	Unity or diversity of executive functioning in children and adolescents with post-traumatic stress symptoms? A systematic review and meta-analysis. Child Neuropsychology, 2022, 28, 374-393.	0.8	3
11	Contextualizing adolescent structural brain development: Environmental determinants and mental health outcomes. Current Opinion in Psychology, 2022, 44, 170-176.	2.5	31
12	Ageâ€related differences in the errorâ€related negativity and error positivity in children and adolescents are moderated by sample and methodological characteristics: A metaâ€analysis. Psychophysiology, 2022, 59, e14003.	1.2	15
13	Lexical Access Speed and the Development of Phonological Recoding during Immediate Serial Recall. Journal of Cognition and Development, 2022, 23, 624-643.	0.6	1
14	Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents. Developmental Cognitive Neuroscience, 2022, 56, 101132.	1.9	12
15	Associations of age, body mass index and biochemical parameters with brain morphology in patients with anorexia nervosa. European Eating Disorders Review, 2021, 29, 74-85.	2.3	3
16	To which world regions does the valence–dominance model of social perception apply?. Nature Human Behaviour, 2021, 5, 159-169.	6.2	85
17	Opportunities for increased reproducibility and replicability of developmental neuroimaging. Developmental Cognitive Neuroscience, 2021, 47, 100902.	1.9	48
18	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	2.4	24

#	Article	IF	CITATIONS
19	Cognitive reappraisal and expressive suppression relate differentially to longitudinal structural brain development across adolescence. Cortex, 2021, 136, 109-123.	1.1	11
20	#EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex, 2021, 144, 213-229.	1.1	52
21	Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age. Advances in Methods and Practices in Psychological Science, 2021, 4, 251524592110181.	5.4	15
22	Electrophysiological and behavioral indices of cognitive conflict processing across adolescence. Developmental Cognitive Neuroscience, 2021, 48, 100929.	1.9	11
23	Development of attention networks from childhood to young adulthood: A study of performance, intraindividual variability and cortical thickness. Cortex, 2021, 138, 138-151.	1.1	12
24	Association of Structural Magnetic Resonance Imaging Measures With Psychosis Onset in Individuals at Clinical High Risk for Developing Psychosis. JAMA Psychiatry, 2021, 78, 753.	6.0	74
25	A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic. Nature Human Behaviour, 2021, 5, 1089-1110.	6.2	71
26	New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings. Progress in Neurobiology, 2021, 204, 102109.	2.8	54
27	Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Developmental Cognitive Neuroscience, 2021, 51, 101008.	1.9	27
28	Inter-individual variability in structural brain development from late childhood to young adulthood. NeuroImage, 2021, 242, 118450.	2.1	64
29	A Pilot Study of a Parent Emotion Socialization Intervention: Impact on Parent Behavior, Child Self-Regulation, and Adjustment. Frontiers in Psychology, 2021, 12, 730278.	1.1	8
30	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	6.0	54
31	Becoming a mother entails anatomical changes in the ventral striatum of the human brain that facilitate its responsiveness to offspring cues. Psychoneuroendocrinology, 2020, 112, 104507.	1.3	50
32	Exploring the links between specific depression symptoms and brain structure: A network study. Psychiatry and Clinical Neurosciences, 2020, 74, 220-221.	1.0	24
33	Maturation of cortical microstructure and cognitive development in childhood and adolescence: A T1w/T2w ratio <scp>MRI</scp> study. Human Brain Mapping, 2020, 41, 4676-4690.	1.9	30
34	Testing relationships between multimodal modes of brain structural variation and age, sex and polygenic scores for neuroticism in children and adolescents. Translational Psychiatry, 2020, 10, 251.	2.4	3
35	Error processing in the adolescent brain: Age-related differences in electrophysiology, behavioral adaptation, and brain morphology. Developmental Cognitive Neuroscience, 2019, 38, 100665.	1.9	28
36	Structural Variability in the Human Brain Reflects Fine-Grained Functional Architecture at the Population Level. Journal of Neuroscience, 2019, 39, 6136-6149.	1.7	29

CHRISTIAN KROG TAMNES

#	Article	IF	CITATIONS
37	Prosocial behavior relates to the rate and timing of cortical thinning from adolescence to young adulthood. Developmental Cognitive Neuroscience, 2019, 40, 100734.	1.9	17
38	Waves of Maturation and Senescence in Micro-structural MRI Markers of Human Cortical Myelination over the Lifespan. Cerebral Cortex, 2019, 29, 1369-1381.	1.6	91
39	Continuity and Discontinuity in Human Cortical Development and Change From Embryonic Stages to Old Age. Cerebral Cortex, 2019, 29, 3879-3890.	1.6	27
40	Probing Brain Developmental Patterns of Myelination and Associations With Psychopathology in Youths Using Gray/White Matter Contrast. Biological Psychiatry, 2019, 85, 389-398.	0.7	45
41	Emerging depression in adolescence coincides with accelerated frontal cortical thinning. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 994-1002.	3.1	84
42	Development of subcortical volumes across adolescence in males and females: A multisample study of longitudinal changes. Neurolmage, 2018, 172, 194-205.	2.1	133
43	Personality Traits Are Associated With Cortical Development Across Adolescence: A Longitudinal Structural MRI Study. Child Development, 2018, 89, 811-822.	1.7	28
44	Longitudinal development of hippocampal subregions from childhood to adulthood. Developmental Cognitive Neuroscience, 2018, 30, 212-222.	1.9	76
45	Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 2018, 91, 105-114.	1.3	146
46	A Key Characteristic of Sex Differences in the Developing Brain: Greater Variability in Brain Structure of Boys than Girls. Cerebral Cortex, 2018, 28, 2741-2751.	1.6	95
47	Structural brain development: A review of methodological approaches and best practices. Developmental Cognitive Neuroscience, 2018, 33, 129-148.	1.9	94
48	Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods, challenges and progress. Developmental Cognitive Neuroscience, 2018, 33, 161-175.	1.9	128
49	The corpus callosum as anatomical marker of intelligence? A critical examination in a large-scale developmental study. Brain Structure and Function, 2018, 223, 285-296.	1.2	29
50	Longitudinal structural brain development and externalizing behavior in adolescence. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 1061-1072.	3.1	53
51	Development of the P300 from childhood to adulthood: a multimodal EEG and MRI study. Brain Structure and Function, 2018, 223, 4337-4349.	1.2	16
52	The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network. Advances in Methods and Practices in Psychological Science, 2018, 1, 501-515.	5.4	203
53	Development of white matter microstructure in relation to verbal and visuospatial working memory—A longitudinal study. PLoS ONE, 2018, 13, e0195540.	1.1	48
54	Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: A systematic review and meta-analysis. Journal of Psychiatric Research, 2018, 104, 217-226.	1.5	116

#	Article	IF	CITATIONS
55	Morphometry and Development: Changes in Brain Structure from Birth to Adult Age. Neuromethods, 2018, , 143-164.	0.2	3
56	Social perspective taking is associated with self-reported prosocial behavior and regional cortical thickness across adolescence Developmental Psychology, 2018, 54, 1745-1757.	1.2	40
57	Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. Journal of Neuroscience, 2017, 37, 3402-3412.	1.7	496
58	Organizing Principles of Human Cortical Development—Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. Cerebral Cortex, 2016, 26, 257-267.	1.6	148
59	Neurocognitive Outcome in Very Longâ€Term Survivors of Childhood Acute Lymphoblastic Leukemia After Treatment with Chemotherapy Only. Pediatric Blood and Cancer, 2016, 63, 133-138.	0.8	63
60	Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 2016, 141, 273-281.	2.1	427
61	Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9357-9362.	3.3	163
62	Brain volumes and regional cortical thickness in young females with anorexia nervosa. BMC Psychiatry, 2016, 16, 404.	1.1	23
63	Diffusion tensor imaging and behavior in premature infants at 8 years of age, a randomized controlled trial with long-chain polyunsaturated fatty acids. Early Human Development, 2016, 95, 41-46.	0.8	24
64	White Matter Microstructure in Early-Onset Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 269-279.	0.3	57
65	Changes in white matter microstructure in the developing brain—A longitudinal diffusion tensor imaging study of children from 4 to 11 years of age. NeuroImage, 2016, 124, 473-486.	2.1	160
66	Cortical surface area and thickness in adult survivors of pediatric acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2015, 62, 1027-1034.	0.8	47
67	Long-Chain Polyunsaturated Fatty Acids and Cognition in VLBW Infants at 8 years: an RCT. Pediatrics, 2015, 135, 972-980.	1.0	49
68	Maturation of Cortico-Subcortical Structural NetworksSegregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development. Cerebral Cortex, 2015, 25, 1835-1841.	1.6	32
69	High-Expanding Cortical Regions in Human Development and Evolution Are Related to Higher Intellectual Abilities. Cerebral Cortex, 2015, 25, 26-34.	1.6	104
70	Development and aging of cortical thickness correspond to genetic organization patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15462-15467.	3.3	228
71	The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?. Cerebral Cortex, 2015, 25, 2556-2565.	1.6	16
72	Genome-Wide Analysis of Attention Deficit Hyperactivity Disorder in Norway. PLoS ONE, 2015, 10, e0122501.	1.1	71

#	Article	IF	CITATIONS
73	Regional Hippocampal Volumes and Development Predict Learning and Memory. Developmental Neuroscience, 2014, 36, 161-174.	1.0	67
74	A common brain network links development, aging, and vulnerability to disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17648-17653.	3.3	268
75	Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and Decelerating Change. Journal of Neuroscience, 2014, 34, 8488-8498.	1.7	450
76	Brain structural maturation and the foundations of cognitive behavioral development. Current Opinion in Neurology, 2014, 27, 176-184.	1.8	39
77	Accelerated Changes in White Matter Microstructure during Aging: A Longitudinal Diffusion Tensor Imaging Study. Journal of Neuroscience, 2014, 34, 15425-15436.	1.7	239
78	Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience, 2014, 9, 172-190.	1.9	216
79	Development of hippocampal subfield volumes from 4 to 22 years. Human Brain Mapping, 2014, 35, 5646-5657.	1.9	82
80	Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Research - Neuroimaging, 2013, 214, 190-196.	0.9	30
81	Brain development and aging: Overlapping and unique patterns of change. Neurolmage, 2013, 68, 63-74.	2.1	240
82	Performance monitoring in children and adolescents: A review of developmental changes in the error-related negativity and brain maturation. Developmental Cognitive Neuroscience, 2013, 6, 1-13.	1.9	105
83	Longitudinal Working Memory Development Is Related to Structural Maturation of Frontal and Parietal Cortices. Journal of Cognitive Neuroscience, 2013, 25, 1611-1623.	1.1	120
84	Reduced Neuroanatomic Volumes in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2013, 31, 2078-2085.	0.8	67
85	Intracortical Myelin Links with Performance Variability across the Human Lifespan: Results from T1- and T2-Weighted MRI Myelin Mapping and Diffusion Tensor Imaging. Journal of Neuroscience, 2013, 33, 18618-18630.	1.7	247
86	Becoming Consistent: Developmental Reductions in Intraindividual Variability in Reaction Time Are Related to White Matter Integrity. Journal of Neuroscience, 2012, 32, 972-982.	1.7	169
87	Dissociating Memory Processes in the Developing Brain: The Role of Hippocampal Volume and Cortical Thickness in Recall after Minutes versus Days. Cerebral Cortex, 2012, 22, 381-390.	1.6	48
88	Mental time travel and default-mode network functional connectivity in the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16800-16804.	3.3	102
89	Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. NeuroImage, 2012, 63, 365-380.	2.1	137
90	Normal variation in behavioral adjustment relates to regional differences in cortical thickness in children. European Child and Adolescent Psychiatry, 2012, 21, 133-140.	2.8	21

CHRISTIAN KROG TAMNES

#	Article	IF	CITATIONS
91	The brain dynamics of intellectual development: Waxing and waning white and gray matter. Neuropsychologia, 2011, 49, 3605-3611.	0.7	48
92	Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia, 2011, 49, 3854-3862.	0.7	107
93	Neuroanatomical correlates of executive functions in children and adolescents: A magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia, 2010, 48, 2496-2508.	0.7	135
94	Intellectual abilities and white matter microstructure in development: A diffusion tensor imaging study. Human Brain Mapping, 2010, 31, 1609-1625.	1.9	110
95	When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. NeuroImage, 2010, 50, 1376-1383.	2.1	222
96	Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. NeuroImage, 2010, 52, 172-185.	2.1	155
97	Brain Maturation in Adolescence and Young Adulthood: Regional Age-Related Changes in Cortical Thickness and White Matter Volume and Microstructure. Cerebral Cortex, 2010, 20, 534-548.	1.6	668
98	Life-Span Changes of the Human Brain White Matter: Diffusion Tensor Imaging (DTI) and Volumetry. Cerebral Cortex, 2010, 20, 2055-2068.	1.6	664
99	Heterogeneity in Subcortical Brain Development: A Structural Magnetic Resonance Imaging Study of Brain Maturation from 8 to 30 Years. Journal of Neuroscience, 2009, 29, 11772-11782.	1.7	423
100	Tactics of hierarchy negotiation. Journal of Research in Personality, 2007, 41, 25-44.	0.9	50
101	Learning From Mistakes: How Does the Brain Handle Errors?. Frontiers for Young Minds, 0, 8, .	0.8	2