Michael J Carvan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6793474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. Environmental Science & Technology, 2022, 56, 3514-3523.	4.6	6
2	Exploring the Impacts of Methylmercuryâ€Induced Behavioral Alterations in Larval Yellow Perch in Lake Michigan Using an Individualâ€Based Model. Transactions of the American Fisheries Society, 2020, 149, 664-680.	0.6	2
3	Mitigative effects of natural and model dissolved organic matter with different functionalities on the toxicity of methylmercury in embryonic zebrafish. Environmental Pollution, 2019, 252, 616-626.	3.7	13
4	Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio). Chemosphere, 2018, 195, 301-311.	4.2	8
5	Neurobehavioral Analysis Methods for Adverse Outcome Pathway (AOP) Models and Risk Assessment. , 2018, , 149-175.		1
6	Developmental Methylmercury Exposure Affects Swimming Behavior and Foraging Efficiency of Yellow Perch (<i>Perca flavescens</i>) Larvae. ACS Omega, 2017, 2, 4870-4877.	1.6	13
7	Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS ONE, 2017, 12, e0176155.	1.1	104
8	The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio) Embryos and Eleutheroembryos Exposed to Methylmercury. PLoS ONE, 2016, 11, e0154570.	1.1	21
9	Parental Whole Life Cycle Exposure to Dietary Methylmercury in Zebrafish (<i>Danio rerio</i>) Affects the Behavior of Offspring. Environmental Science & Technology, 2016, 50, 4808-4816.	4.6	32
10	Understanding Genetics and Pediatric Cardiac Health. Journal of Pediatric Nursing, 2016, 31, 3-10.	0.7	8
11	Neuroendocrine biochemical effects in methylmercury-exposed yellow perch. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 187, 10-18.	1.3	5
12	Maternal methylmercury from a wild-caught walleye diet induces developmental abnormalities in zebrafish. Reproductive Toxicology, 2016, 65, 272-282.	1.3	14
13	Wild Sex in Zebrafish: Loss of the Natural Sex Determinant in Domesticated Strains. Genetics, 2014, 198, 1291-1308.	1.2	282
14	Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway <i>ex vivo</i> independent of oxidative stress. Nanotoxicology, 2014, 8, 856-866.	1.6	10
15	An Evolutionarily Conserved Mechanism of Calciumâ€Đependent Neurotoxicity in a Zebrafish Model of Fetal Alcohol Spectrum Disorders. Alcoholism: Clinical and Experimental Research, 2014, 38, 1255-1265.	1.4	41
16	Engineered Nanomaterials: An Emerging Class of Novel Endocrine Disruptors1. Biology of Reproduction, 2014, 91, 20.	1.2	28
17	Histopathologic Alterations Associated with Global Gene Expression Due to Chronic Dietary TCDD Exposure in Juvenile Zebrafish. PLoS ONE, 2014, 9, e100910.	1.1	12
18	Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure. Aquatic Toxicology, 2013, 140-141, 356-368.	1.9	19

MICHAEL J CARVAN

#	Article	IF	CITATIONS
19	Effects of methylmercury on epigenetic markers in three model species: Mink, chicken and yellow perch. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013, 157, 322-327.	1.3	32
20	Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Ecotoxicology, 2013, 22, 740-751.	1.1	22
21	Comparison of neurobehavioral effects of methylmercury exposure in older and younger adult zebrafish (Danio rerio). NeuroToxicology, 2012, 33, 1212-1218.	1.4	13
22	Absence of Fractionation of Mercury Isotopes during Trophic Transfer of Methylmercury to Freshwater Fish in Captivity. Environmental Science & Technology, 2012, 46, 7527-7534.	4.6	121
23	Zebrafish as a Model for Methylmercury Neurotoxicity. , 2012, , 335-355.		Ο
24	Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environmental Toxicology and Chemistry, 2011, 30, 9-21.	2.2	58
25	Developmental selenomethionine and methylmercury exposures affect zebrafish learning. Neurotoxicology and Teratology, 2010, 32, 246-255.	1.2	60
26	Detection of Mercury in Aquatic Environments Using EPRE Reporter Zebrafish. Marine Biotechnology, 2008, 10, 750-757.	1.1	39
27	Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: Insights into TCDD-induced endocrine disruption and reproductive toxicity. Reproductive Toxicology, 2008, 25, 47-57.	1.3	52
28	Selenomethionine reduces visual deficits due to developmental methylmercury exposures. Physiology and Behavior, 2008, 93, 250-260.	1.0	59
29	Meeting the Challenges of Aquatic Vertebrate Ecotoxicology. BioScience, 2008, 58, 1015-1025.	2.2	17
30	Fish Models in Toxicology. Zebrafish, 2007, 4, 9-20.	0.5	27
31	Inhibition of Follicular Development, Vitellogenesis, and Serum 17β-Estradiol Concentrations in Zebrafish Following Chronic, Sublethal Dietary Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Toxicological Sciences, 2006, 90, 490-499.	1.4	72
32	Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Analytical Biochemistry, 2006, 352, 265-273.	1.1	145
33	Gene Expression Changes Related to Endocrine Function and Decline in Reproduction in Fathead Minnow (Pimephales promelas) after Dietary Methylmercury Exposure. Environmental Health Perspectives, 2006, 114, 1337-1343.	2.8	68
34	Accumulation, Tissue Distribution, and Maternal Transfer of Dietary 2,3,7,8,-Tetrachlorodibenzo-p-Dioxin: Impacts on Reproductive Success of Zebrafish. Toxicological Sciences, 2005, 87, 497-507.	1.4	56
35	Chapter 1 The utility of zebrafish as a model for toxicological research. Biochemistry and Molecular Biology of Fishes, 2005, 6, 3-41.	0.5	14
36	Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicology and Teratology, 2004, 26, 757-768.	1.2	232

MICHAEL J CARVAN

#	Article	IF	CITATIONS
37	Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicology and Teratology, 2004, 26, 745-755.	1.2	128
38	An Interview with Michael Carvan, Ph.D Zebrafish, 2004, 1, 71-76.	0.5	1
39	Automated Analysis of Conserved Syntenies for the Zebrafish Genome. Methods in Cell Biology, 2004, 77, 255-271.	0.5	14
40	Use of Reporter Genes and Vertebrate DNA Motifs in Transgenic Zebrafish as Sentinels for Assessing Aquatic Pollution. Environmental Health Perspectives, 2002, 110, A15.	2.8	2
41	Developmental Expression of Alcohol Dehydrogenase (ADH3) in Zebrafish (Danio rerio). Biochemical and Biophysical Research Communications, 2001, 286, 1082-1086.	1.0	38
42	Oxidative stress in zebrafish cells: potential utility of transgenic zebrafish as a deployable sentinel for site hazard ranking. Science of the Total Environment, 2001, 274, 183-196.	3.9	54
43	Activation of Transcription Factors in Zebrafish Cell Cultures by Environmental Pollutants. Archives of Biochemistry and Biophysics, 2000, 376, 320-327.	1.4	45
44	Transgenic Zebrafish as Sentinels for Aquatic Pollution. Annals of the New York Academy of Sciences, 2000, 919, 133-147.	1.8	93
45	"Geneâ€5wap Knockâ€in―Cassette in Mice to Study Allelic Differences in Human Genes. Annals of the New York Academy of Sciences, 2000, 919, 148-170.	1.8	46
46	Ecogenetics: From Ecology To Health. Toxicology and Industrial Health, 1997, 13, 163-192.	0.6	15
47	Ethoxyresorufin and pentoxyresorufin O-dealkylation by hepatic microsomes from female Fischer 344 rats: effects of age and diet. Mechanisms of Ageing and Development, 1994, 77, 1-11.	2.2	5
48	Effects of aging and long-term caloric restriction on hepatic microsomal monooxygenases in female fischer 344 rats: Alterations in basal cytochrome P-450 catalytic activities. Age, 1993, 16, 1-8.	3.0	10