
Tarek A Bismar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6793273/publications.pdf Version: 2024-02-01

TADER A RISMAD

#	Article	IF	CITATIONS
1	Patients with Muscle-Invasive Bladder Cancer with Nonluminal Subtype Derive Greatest Benefit from Platinum Based Neoadjuvant Chemotherapy. Journal of Urology, 2022, 207, 541-550.	0.2	30
2	ARPC1B Is Associated with Lethal Prostate Cancer and Its Inhibition Decreases Cell Invasion and Migration In Vitro. International Journal of Molecular Sciences, 2022, 23, 1476.	1.8	6
3	The Expression of Proto-Oncogene ETS-Related Gene (ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 4772.	1.8	16
4	High Serine-arginine Protein Kinase 1 Expression with PTEN Loss Defines Aggressive Phenotype of Prostate Cancer Associated with Lethal Outcome and Decreased Overall Survival. European Urology Open Science, 2021, 23, 1-8.	0.2	7
5	Expression of ISL1 and its partners in prostate cancer progression and neuroendocrine differentiation. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2223-2231.	1.2	4
6	Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry. Cancers, 2021, 13, 2363.	1.7	1
7	Decreased ATM Protein Expression Is Substantiated with PTEN Loss in Defining Aggressive Phenotype of Prostate Cancer Associated with Lethal Disease. European Urology Open Science, 2021, 29, 93-101.	0.2	5
8	Clonal evaluation of early onset prostate cancer by expression profiling of ERG, SPINK1, <i>ETV1</i> , and <i>ETV4</i> on wholeâ€mount radical prostatectomy tissue. Prostate, 2020, 80, 38-50.	1.2	15
9	Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer and Prostatic Diseases, 2020, 23, 136-143.	2.0	36
10	Validation of a neuroendocrine-like classifier confirms poor outcomes in patients with bladder cancer treated with cisplatin-based neoadjuvant chemotherapy. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 262-268.	0.8	15
11	Development and Validation of a Genomic Tool to Predict Seminal Vesicle Invasion in Adenocarcinoma of the Prostate. JCO Precision Oncology, 2020, 4, 1228-1238.	1.5	2
12	Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. American Journal of Surgical Pathology, 2020, 44, e15-e29.	2.1	40
13	ATM-deficient lung, prostate and pancreatic cancer cells are acutely sensitive to the combination of olaparib and the ATR inhibitor AZD6738. Genome Instability & Disease, 2020, 1, 197-205.	0.5	9
14	DNA methylation signatures of Prostate Cancer in peripheral T-cells. BMC Cancer, 2020, 20, 588.	1.1	13
15	Molecular characterization of prostate cancer in Middle Eastern population highlights differences with Western populations with prognostic implication. Journal of Cancer Research and Clinical Oncology, 2020, 146, 1701-1709.	1.2	3
16	Characterization of transcriptomic signature of primary prostate cancer analogous to prostatic small cell neuroendocrine carcinoma. International Journal of Cancer, 2019, 145, 3453-3461.	2.3	18
17	Combined loss of TFF3 and PTEN is associated with lethal outcome and overall survival in men with prostate cancer. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1751-1759.	1.2	8
18	Validation of the Decipher Test for predicting adverse pathology in candidates for prostate cancer active surveillance. Prostate Cancer and Prostatic Diseases, 2019, 22, 399-405.	2.0	53

TAREK A BISMAR

#	Article	IF	CITATIONS
19	Validation of a 10-gene molecular signature for predicting biochemical recurrence and clinical metastasis in localized prostate cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 883-891.	1.2	24
20	Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease. Carcinogenesis, 2018, 39, 1431-1437.	1.3	35
21	Clinical utility of assessing PTEN and ERG protein expression in prostate cancer patients: a proposed method for risk stratification. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2117-2125.	1.2	19
22	Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis. Nature Communications, 2018, 9, 2343.	5.8	21
23	Tubulovillous Adenoma in the Bladder in a Dual Pancreas-Kidney Transplant Patient. Journal of Endourology Case Reports, 2017, 3, 17-20.	0.3	0
24	ING3 promotes prostate cancer growth by activating the androgen receptor. BMC Medicine, 2017, 15, 103.	2.3	27
25	SPINK1 Overexpression in Localized Prostate Cancer: a Rare Event Inversely Associated with ERG Expression and Exclusive of Homozygous PTEN Deletion. Pathology and Oncology Research, 2017, 23, 399-407.	0.9	9
26	Ankyrin G expression is associated with androgen receptor stability, invasiveness, and lethal outcome in prostate cancer patients. Journal of Molecular Medicine, 2016, 94, 1411-1422.	1.7	21
27	Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2. Scientific Reports, 2016, 6, 36699.	1.6	22
28	High alpha-methylacyl-CoA racemase (AMACR) is associated with ERG expression and with adverse clinical outcome in patients with localized prostate cancer. Tumor Biology, 2016, 37, 12287-12299.	0.8	16
29	Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer. Cancer Research, 2016, 76, 1603-1614.	0.4	40
30	ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumor Biology, 2016, 37, 9731-9738.	0.8	14
31	microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients. Molecular Biology Reports, 2016, 43, 229-240.	1.0	12
32	SPINK1 expression in relation to PTEN and ERG in matched primary and lymph node metastatic prostate cancer: Implications for biomarker development. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 235.e1-235.e10.	0.8	17
33	ERG expression in prostate cancer: biological relevance and clinical implication. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1781-1793.	1.2	14
34	ERG Expression in Prostate Needle Biopsy. Applied Immunohistochemistry and Molecular Morphology, 2015, 23, 499-505.	0.6	19
35	ING3 protein expression profiling in normal human tissues suggest its role in cellular growth and self-renewal. European Journal of Cell Biology, 2015, 94, 214-222.	1.6	15
36	The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting. Cancer Medicine, 2014, 3, 14-24.	1.3	28

TAREK A BISMAR

#	Article	IF	CITATIONS
37	The prognostic significance of combined ERG and androgen receptor expression in patients with prostate cancer managed by androgen deprivation therapy. Cancer Biology and Therapy, 2014, 15, 1120-1128.	1.5	11
38	Interrogation of <i><scp>ERG</scp></i> gene rearrangements in prostate cancer identifies a prognostic 10â€gene signature with relevant implication to patients' clinical outcome. BJU International, 2014, 113, 309-319.	1.3	22
39	Prostate Epithelium-Specific Deletion of the Selenocysteine tRNA Gene Trsp Leads to Early Onset Intraepithelial Neoplasia. American Journal of Pathology, 2014, 184, 871-877.	1.9	16
40	Cysteine- rich secretory protein 3 (CRISP3), ERG and PTEN define a molecular subtype of prostate cancer with implication to patients' prognosis. Journal of Hematology and Oncology, 2014, 7, 21.	6.9	25
41	Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Experimental Cell Research, 2014, 320, 233-246.	1.2	46
42	Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal TreatmentRelated Neuroendocrine Prostate Cancer. Neoplasia, 2013, 15, 1-IN4.	2.3	205
43	ERG Protein Expression and Gene Rearrangements Are Present at Lower Rates in Metastatic and Locally Advanced Castration-resistant Prostate Cancer Compared to Localized Disease. Urology, 2013, 82, 394-399.	0.5	22
44	<i>TMPRSS2-ERG</i> Status Is Not Prognostic Following Prostate Cancer Radiotherapy: Implications for Fusion Status and DSB Repair. Clinical Cancer Research, 2013, 19, 5202-5209.	3.2	39
45	ERG Protein Expression Is of Limited Prognostic Value in Men with Localized Prostate Cancer. ISRN Urology, 2013, 2013, 1-6.	1.5	12
46	Coordinate MicroRNA-Mediated Regulation of Protein Complexes in Prostate Cancer. PLoS ONE, 2013, 8, e84261.	1.1	9
47	Functional characterization of miRNAs in prostate cancer using functional protein networks. , 2012, ,		0
48	Integrative Molecular Profiling Reveals Asparagine Synthetase Is a Target in Castration-Resistant Prostate Cancer. American Journal of Pathology, 2012, 180, 895-903.	1.9	72
49	ERG protein expression reflects hormonal treatment response and is associated with Gleason score and prostate cancer specific mortality. European Journal of Cancer, 2012, 48, 538-546.	1.3	58
50	Interactions and relationships of <i>PTEN</i> , <i>ERG</i> , <i>SPINK1</i> and <i>AR</i> in castrationâ€resistant prostate cancer. Histopathology, 2012, 60, 645-652.	1.6	52
51	Elevated physiological levels of folic acid can increase <i>in vitro</i> growth and invasiveness of prostate cancer cells. BJU International, 2012, 109, 788-795.	1.3	35
52	<i>PTEN</i> genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications. Genes Chromosomes and Cancer, 2012, 51, 149-160.	1.5	53
53	<i>PTEN</i> genomic deletion is an early event associated with <i>ERG</i> gene rearrangements in prostate cancer. BJU International, 2011, 107, 477-485.	1.3	99
54	<i>PTEN</i> deletion and heme oxygenaseâ€1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. Journal of Pathology, 2011, 224, 90-100.	2.1	62

TAREK A BISMAR

#	Article	IF	CITATIONS
55	Detection ofERGgene rearrangements andPTENdeletions in unsuspected prostate cancer of the transition zone. Cancer Biology and Therapy, 2011, 11, 562-566.	1.5	35
56	Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Medicine, 2010, 16, 793-798.	15.2	436
57	Syndecanâ€1 expression in prostate cancer and its value as biomarker for disease progression. BJU International, 2010, 106, 418-423.	1.3	17
58	Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. Journal of Experimental Medicine, 2010, 207, 2421-2437.	4.2	146
59	ERG Cooperates with Androgen Receptor in Regulating Trefoil Factor 3 in Prostate Cancer Disease Progression. Neoplasia, 2010, 12, 1031-IN22.	2.3	51
60	Fascin Regulates Prostate Cancer Cell Invasion and Is Associated with Metastasis and Biochemical Failure in Prostate Cancer. Clinical Cancer Research, 2009, 15, 1376-1383.	3.2	91
61	A Novel Experimental Heme Oxygenase-1–Targeted Therapy for Hormone-Refractory Prostate Cancer. Cancer Research, 2009, 69, 8017-8024.	0.4	110
62	TMPRSS2-ERG fusion is frequently observed in gleason pattern 3 prostate cancer in a Canadian cohort. Cancer Biology and Therapy, 2009, 8, 125-130.	1.5	59
63	<i>PTEN</i> genomic deletion is associated with pâ€Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. Journal of Pathology, 2009, 218, 505-513.	2.1	196
64	Focal Adhesion Kinase-Related Proline-Rich Tyrosine Kinase 2 and Focal Adhesion Kinase Are Co-Overexpressed in Early-Stage and Invasive ErbB-2-Positive Breast Cancer and Cooperate for Breast Cancer Cell Tumorigenesis and Invasiveness. American Journal of Pathology, 2008, 173, 1540-1550.	1.9	57
65	Characterization of <i>TMPRSS2-ERG</i> Fusion High-Grade Prostatic Intraepithelial Neoplasia and Potential Clinical Implications. Clinical Cancer Research, 2008, 14, 3380-3385.	3.2	200
66	TMPRSS2-ERG Fusion Prostate Cancer: An Early Molecular Event Associated With Invasion. American Journal of Surgical Pathology, 2007, 31, 882-888.	2.1	394
67	Defining Aggressive Prostate Cancer Using a 12-Gene Model. Neoplasia, 2006, 8, 59-68.	2.3	90
68	Decreased Â-Methylacyl CoA Racemase Expression in Localized Prostate Cancer is Associated with an Increased Rate of Biochemical Recurrence and Cancer-Specific Death. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1424-1432.	1.1	105