Marlou L Dirks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792607/publications.pdf Version: 2024-02-01

MADIOUL DIDKS

#	Article	IF	CITATIONS
1	Improving skeletal muscle insulin sensitivity via beta ₂ â€egonist administration: a promising strategy to counteract metabolic disease and muscle loss. Journal of Physiology, 2022, 600, 2273-2274.	1.3	0
2	Editorial: Sarcopenic Obesity: Mechanisms and Countermeasures. Frontiers in Nutrition, 2022, 9, 886323.	1.6	0
3	A mycoprotein-based high-protein vegan diet supports equivalent daily myofibrillar protein synthesis rates compared with an isonitrogenous omnivorous diet in older adults: a randomised controlled trial. British Journal of Nutrition, 2021, 126, 674-684.	1.2	22
4	Daily mycoprotein consumption for 1 week does not affect insulin sensitivity or glycaemic control but modulates the plasma lipidome in healthy adults: a randomised controlled trial. British Journal of Nutrition, 2021, 125, 147-160.	1.2	30
5	Improved recovery from skeletal muscle damage is largely unexplained by myofibrillar protein synthesis or inflammatory and regenerative gene expression pathways. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E291-E305.	1.8	22
6	Reducing NF-κB Signaling Nutritionally is Associated with Expedited Recovery of Skeletal Muscle Function After Damage. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2057-2076.	1.8	13
7	Stable isotope approaches to study muscle mass outcomes in clinical populations. Clinical Nutrition Open Science, 2021, 36, 98-108.	0.5	3
8	Muscle damaging eccentric exercise attenuates disuse-induced declines in daily myofibrillar protein synthesis and transiently prevents muscle atrophy in healthy men. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E674-E688.	1.8	10
9	High-fat Overfeeding Does Not Exacerbate Rapid Changes in Forearm Glucose and Fatty Acid Balance During Immobilization. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 276-289.	1.8	29
10	Shortâ€ŧerm bed restâ€induced insulin resistance cannot be explained by increased mitochondrial H ₂ O ₂ emission. Journal of Physiology, 2020, 598, 123-137.	1.3	32
11	CrossTalk opposing view: Intramuscular lipid accumulation does not cause insulin resistance. Journal of Physiology, 2020, 598, 3807-3810.	1.3	4
12	Rebuttal from Marlou L. Dirks, Benjamin T. Wall and Francis B. Stephens. Journal of Physiology, 2020, 598, 3813-3814.	1.3	0
13	Branched-Chain Amino Acid Fortification Does Not Restore Muscle Protein Synthesis Rates following Ingestion of Lower- Compared with Higher-Dose Mycoprotein. Journal of Nutrition, 2020, 150, 2931-2941.	1.3	17
14	Intermittent versus continuous enteral nutrition attenuates increases in insulin and leptin during short-term bed rest. European Journal of Applied Physiology, 2020, 120, 2083-2094.	1.2	12
15	Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. Journal of Nutrition, 2020, 150, 2041-2050.	1.3	64
16	The Impact of Disuse and High-Fat Overfeeding on Forearm Muscle Amino Acid Metabolism in Humans. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2547-e2562.	1.8	12
17	Mycoprotein ingestion stimulates protein synthesis rates to a greater extent than milk protein in rested and exercised skeletal muscle of healthy young men: a randomized controlled trial. American Journal of Clinical Nutrition, 2020, 112, 318-333.	2.2	57
18	Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight. Frontiers in Physiology, 2019, 10, 1031.	1.3	30

MARLOU L DIRKS

#	Article	IF	CITATIONS
19	Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E536-E545.	1.8	22
20	A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity. Experimental Physiology, 2018, 103, 860-875.	0.9	19
21	Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle. Cell Reports, 2018, 22, 2837-2848.	2.9	86
22	Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. Journal of Applied Physiology, 2018, 125, 850-861.	1.2	32
23	Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly. Journal of the American Medical Directors Association, 2017, 18, 608-615.	1.2	37
24	Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis. Journal of Applied Physiology, 2017, 122, 20-27.	1.2	18
25	May bed rest cause greater muscle loss than limb immobilization?. Acta Physiologica, 2016, 218, 10-2.	1.8	15
26	A single session of neuromuscular electrical stimulation does not augment postprandial muscle protein accretion. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E278-E285.	1.8	11
27	One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes, 2016, 65, 2862-2875.	0.3	267
28	Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E137-E147.	1.8	103
29	Hypoxia Induces a Prothrombotic State Independently of the Physical Activity. PLoS ONE, 2015, 10, e0141797.	1.1	28
30	There Are No Nonresponders to Resistance-Type Exercise Training inÂOlder Men and Women. Journal of the American Medical Directors Association, 2015, 16, 400-411.	1.2	215
31	Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clinical Science, 2015, 128, 357-365.	1.8	103
32	Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. Experimental Gerontology, 2015, 61, 76-83.	1.2	39
33	Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content. Clinical Science, 2014, 126, 557-566.	1.8	55
34	Substantial skeletal muscle loss occurs during only 5Âdays of disuse. Acta Physiologica, 2014, 210, 600-611.	1.8	222
35	Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiologica, 2014, 210, 628-641.	1.8	177
36	Skeletal Muscle Disuse Atrophy Is Not Attenuated by Dietary Protein Supplementation in Healthy Older Men. Journal of Nutrition, 2014, 144, 1196-1203.	1.3	105

MARLOU L DIRKS

#	Article	IF	CITATIONS
37	Skeletal muscle atrophy during short-term disuse: Implications for age-related sarcopenia. Ageing Research Reviews, 2013, 12, 898-906.	5.0	293
38	Myofibrillar distribution of succinate dehydrogenase activity and lipid stores differs in skeletal muscle tissue of paraplegic subjects. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E365-E373.	1.8	8
39	Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E614-E623.	1.8	72
40	Reduced Satellite Cell Numbers with Spinal Cord Injury and Aging in Humans. Medicine and Science in Sports and Exercise, 2012, 44, 2322-2330.	0.2	82
41	Protein Supplementation Improves Physical Performance in Frail Elderly People: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of the American Medical Directors Association, 2012, 13, 720-726.	1.2	353
42	Protein Supplementation Increases Muscle Mass Gain During Prolonged Resistance-Type Exercise Training in Frail Elderly People: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of the American Medical Directors Association, 2012, 13, 713-719.	1.2	449
43	Neuromuscular electrical stimulation increases muscle protein synthesis rates in type 2 diabetic men. FASEB Journal, 2012, 26, lb712.	0.2	0