
Karin Stana-Kleinschek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy and Fuels, 2021, 5, 604-637.	2.5	163
2	Oxidized cellulose—Survey of the most recent achievements. Carbohydrate Polymers, 2013, 93, 207-215.	5.1	144
3	Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules, 2013, 14, 1769-1776.	2.6	137
4	Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydrate Polymers, 2011, 84, 22-32.	5.1	128
5	A review of herbal medicines in wound healing. International Journal of Dermatology, 2015, 54, 740-751.	0.5	121
6	Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polymer Degradation and Stability, 2007, 92, 1957-1965.	2.7	106
7	Functional wound dressing materials with highly tunable drug release properties. RSC Advances, 2015, 5, 77873-77884.	1.7	101
8	Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. Journal of Colloid and Interface Science, 2011, 358, 604-610.	5.0	98
9	Adsorption of Carboxymethyl Cellulose on Polymer Surfaces: Evidence of a Specific Interaction with Cellulose. Langmuir, 2012, 28, 11440-11447.	1.6	86
10	Surface characterization and adsorption abilities of cellulose fibers. Polymer Engineering and Science, 1999, 39, 1412-1424.	1.5	83
11	Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 195, 81-95.	2.3	77
12	Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter, 2012, 8, 9807.	1.2	76
13	Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 195, 275-284.	2.3	73
14	Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. Journal of Sol-Gel Science and Technology, 2018, 88, 33-48.	1.1	73
15	Functional Polysaccharide Composite Nanoparticles from Cellulose Acetate and Potential Applications. Advanced Functional Materials, 2012, 22, 1749-1758.	7.8	66
16	Determination of the adsorption character of cellulose fibres using surface tension and surface charge. Materials Research Innovations, 2002, 6, 13-18.	1.0	65
17	Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. Journal of Applied Polymer Science, 2004, 92, 3186-3195.	1.3	64
18	Polysaccharide-Based Bioink Formulation for 3D Bioprinting of an In Vitro Model of the Human Dermis. Nanomaterials, 2020, 10, 733.	1.9	64

KARIN STANA-KLEINSCHEK

#	Article	IF	CITATIONS
19	Antifouling coating of cellulose acetate thin films with polysaccharide multilayers. Carbohydrate Polymers, 2015, 116, 149-158.	5.1	61
20	Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose, 2015, 22, 749-761.	2.4	56
21	Determining the Surface Free Energy of Cellulose Materials with the Powder Contact Angle Method. Textile Reseach Journal, 2004, 74, 55-62.	1.1	54
22	Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: A potentiometric titration study. Carbohydrate Polymers, 2009, 78, 36-40.	5.1	54
23	Novel cellulose based materials for safe and efficient wound treatment. Carbohydrate Polymers, 2014, 100, 55-64.	5.1	54
24	Chitosan–silane sol–gel hybrid thin films with controllable layer thickness and morphology. Carbohydrate Polymers, 2013, 93, 285-290.	5.1	53
25	Functional Patterning of Biopolymer Thin Films Using Enzymes and Lithographic Methods. Advanced Functional Materials, 2013, 23, 308-315.	7.8	53
26	Triggering Protein Adsorption on Tailored Cationic Cellulose Surfaces. Biomacromolecules, 2014, 15, 3931-3941.	2.6	50
27	Sorption Properties of Flax Fibers Depending on Pretreatment Processes and their Environmental Impact. Textile Reseach Journal, 2006, 76, 448-454.	1.1	49
28	Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates. Molecules, 2013, 18, 12441-12463.	1.7	49
29	Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties. Pharmaceutics, 2021, 13, 564.	2.0	48
30	Chitin nanowhisker – Inspired electrospun PVDF membrane for enhanced oil-water separation. Journal of Environmental Management, 2018, 228, 249-259.	3.8	47
31	Improvement of the Hemocompatibility of PET Surfaces Using Different Sulphated Polysaccharides as Coating Materials. Biomacromolecules, 2010, 11, 377-381.	2.6	46
32	Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polymer Bulletin, 2019, 76, 1557-1571.	1.7	46
33	Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Advances, 2014, 4, 11955-11961.	1.7	45
34	X-ray study of pre-treated regenerated cellulose fibres. Materials Research Innovations, 2003, 7, 275-282.	1.0	44
35	Plasma modification of viscose textile. Vacuum, 2009, 84, 79-82.	1.6	44
36	Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. Journal of Sol-Gel Science and Technology, 2016, 79, 475-486.	1.1	43

#	Article	IF	CITATIONS
37	Gold nanoparticles in the engineering of antibacterial and anticoagulant surfaces. Carbohydrate Polymers, 2015, 117, 34-42.	5.1	42
38	Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications. ACS Applied Bio Materials, 2020, 3, 1197-1209.	2.3	42
39	Influence of aqueous medium on mechanical properties of conventional and new environmentally friendly regenerated cellulose fibers. Materials Research Innovations, 2001, 4, 107-114.	1.0	41
40	The Significance of Surface Charge and Structure on the Accessibility of Cellulose Fibres. Macromolecular Materials and Engineering, 2001, 286, 648.	1.7	41
41	The influence of classical and enzymatic treatment on the surface charge of cellulose fibres. Colloid and Polymer Science, 1996, 274, 388-394.	1.0	40
42	Creating Water Vapor Barrier Coatings from Hydrophilic Components. ACS Applied Materials & Interfaces, 2012, 4, 3199-3206.	4.0	40
43	Needleless electrospun carboxymethyl cellulose/polyethylene oxide mats with medicinal plant extracts for advanced wound care applications. Cellulose, 2020, 27, 4487-4508.	2.4	40
44	Watching cellulose grow – Kinetic investigations on cellulose thin film formation at the gas–solid interface using a quartz crystal microbalance with dissipation (QCM-D). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 400, 67-72.	2.3	39
45	Design of simultaneous antimicrobial and anticoagulant surfaces based on nanoparticles and polysaccharides. Journal of Materials Chemistry B, 2013, 1, 2022.	2.9	39
46	Design of anticoagulant surfaces based on cellulose nanocrystals. Chemical Communications, 2014, 50, 13070-13072.	2.2	39
47	Designing Hydrophobically Modified Polysaccharide Derivatives for Highly Efficient Enzyme Immobilization. Biomacromolecules, 2015, 16, 2403-2411.	2.6	39
48	Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose, 2011, 18, 33-43.	2.4	38
49	Surface-Sensitive Approach to Interpreting Supramolecular Rearrangements in Cellulose by Synchrotron Grazing Incidence Small-Angle X-ray Scattering. ACS Macro Letters, 2015, 4, 713-716.	2.3	38
50	A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine. Cellulose, 2018, 25, 7277-7297.	2.4	38
51	Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohydrate Polymers, 2013, 93, 191-198.	5.1	37
52	Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose. Carbohydrate Polymers, 2013, 91, 502-507.	5.1	37
53	Layering of different materials to achieve optimal conditions for treatment of painful wounds. International Journal of Pharmaceutics, 2017, 529, 576-588.	2.6	37
54	Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma. Surface and Interface Analysis, 2012, 44, 1565-1571.	0.8	36

KARIN STANA-KLEINSCHEK

#	Article	IF	CITATIONS
55	Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohydrate Polymers, 2017, 163, 92-100.	5.1	36
56	Development of multifunctional 3D printed bioscaffolds from polysaccharides and NiCu nanoparticles and their application. Applied Surface Science, 2019, 488, 836-852.	3.1	35
57	Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials. Plasma Sources Science and Technology, 2015, 24, 015026.	1.3	34
58	Recent advances in vacuum sciences and applications. Journal Physics D: Applied Physics, 2014, 47, 153001.	1.3	33
59	Covalent Binding of Heparin to Functionalized PET Materials for Improved Haemocompatibility. Materials, 2015, 8, 1526-1544.	1.3	33
60	Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. Journal of Materials Chemistry B, 2017, 5, 3888-3897.	2.9	32
61	Semiâ€Synthetic Polysaccharide Sulfates as Anticoagulant Coatings for PET, 1 – Cellulose Sulfate. Macromolecular Bioscience, 2011, 11, 549-556.	2.1	31
62	Interaction between model poly(ethylene terephthalate) thin films and weakly ionised oxygen plasma. Surface and Interface Analysis, 2012, 44, 56-61.	0.8	31
63	Characterization of nano-sized TiO2 suspensions for functional modification of polyester fabric. Surface and Coatings Technology, 2013, 226, 68-74.	2.2	31
64	Electrokinetic Investigations of Oriented Cellulose Polymers. Macromolecular Symposia, 2006, 244, 31-47.	0.4	30
65	Viscoelastic properties of fibrinogen adsorbed onto poly(ethylene terephthalate) surfaces by QCM-D. Carbohydrate Polymers, 2013, 93, 246-255.	5.1	30
66	Advanced therapies of skin injuries. Wiener Klinische Wochenschrift, 2015, 127, 187-198.	1.0	30
67	Exploring Nonspecific Protein Adsorption on Lignocellulosic Amphiphilic Bicomponent Films. Biomacromolecules, 2016, 17, 1083-1092.	2.6	30
68	Topochemical modification of cotton fibres with carboxymethyl cellulose. Cellulose, 2008, 15, 315-321.	2.4	29
69	Adsorption of Chitosan on PET Films Monitored by Quartz Crystal Microbalance. Biomacromolecules, 2008, 9, 2207-2214.	2.6	29
70	Carboxyl groups in pre-treated regenerated cellulose fibres. Cellulose, 2008, 15, 681-690.	2.4	28
71	Adsorption of Fucoidan and Chitosan Sulfate on Chitosan Modified PET Films Monitored by QCM-D. Biomacromolecules, 2009, 10, 630-637.	2.6	28
72	Characterisation of surface properties of chemical and plasma treated regenerated cellulose fabric. Textile Reseach Journal, 2012, 82, 2078-2089.	1.1	28

#	Article	IF	CITATIONS
73	Cationically rendered biopolymer surfaces for high protein affinity support matrices. Chemical Communications, 2013, 49, 11530.	2.2	28
74	Interaction of Tissue Engineering Substrates with Serum Proteins and Its Influence on Human Primary Endothelial Cells. Biomacromolecules, 2017, 18, 413-421.	2.6	28
75	Effect of different surface active polysaccharide derivatives on the formation of ethyl cellulose particles by the emulsion-solvent evaporation method. Cellulose, 2018, 25, 6901-6922.	2.4	28
76	Polysaccharide Thin Solid Films for Analgesic Drug Delivery and Growth of Human Skin Cells. Frontiers in Chemistry, 2019, 7, 217.	1.8	28
77	The effect of adsorbed carboxymethyl cellulose on the cotton fibre adsorption capacity for surfactant. Cellulose, 2006, 13, 655-663.	2.4	27
78	Morphology of polysaccharide blend fibers shaped from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Cellulose, 2011, 18, 1165-1178.	2.4	27
79	Interactions of a cationic cellulose derivative with an ultrathin cellulose support. Carbohydrate Polymers, 2013, 92, 1046-1053.	5.1	27
80	Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology. Thin Solid Films, 2018, 660, 120-160.	0.8	27
81	Functional Polysaccharide Conjugates for the Preparation of Microarrays. ACS Applied Materials & Interfaces, 2012, 4, 2743-2751.	4.0	26
82	Etching of Blood Proteins in the Early and Late Flowing Afterglow of Oxygen Plasma. Plasma Plasma Processes and Polymers, 2014, 11, 12-23.	1.6	26
83	Novel Chitosan–Mg(OH) ₂ -Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 19356-19368.	3.2	26
84	A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose, 2014, 21, 2315-2325.	2.4	24
85	Influence of surface energy on the interactions between hard coatings and lubricants. Wear, 2007, 262, 1199-1204.	1.5	23
86	Antithrombotic properties of sulfated wood-derived galactoglucomannans. Holzforschung, 2012, 66, 149-154.	0.9	23
87	Adsorption of human serum albumin (HSA) on modified PET films monitored by QCM-D, XPS and AFM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 210-219.	2.3	22
88	The study of plasma's modification effects in viscose used as an absorbent for wound-relevant fluids. Carbohydrate Polymers, 2013, 97, 143-151.	5.1	22
89	Modification of cellulose non-woven substrates for preparation of modern wound dressings. Textile Reseach Journal, 2014, 84, 96-112.	1.1	22
90	Multilayered Polysaccharide Nanofilms for Controlled Delivery of Pentoxifylline and Possible Treatment of Chronic Venous Ulceration. Biomacromolecules, 2017, 18, 2732-2746.	2.6	22

#	Article	IF	CITATIONS
91	Generalized Indirect Fourier Transformation as a Valuable Tool for the Structural Characterization of Aqueous Nanocrystalline Cellulose Suspensions by Small Angle X-ray Scattering. Langmuir, 2013, 29, 3740-3748.	1.6	21
92	Nanofibrous polysaccharide hydroxyapatite composites with biocompatibility against human osteoblasts. Carbohydrate Polymers, 2017, 177, 388-396.	5.1	21
93	Nano- and Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response. Biomacromolecules, 2019, 20, 2327-2337.	2.6	21
94	Electrokinetic investigation of polyelectrolyte adsorption and multilayer formation on a polymer surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 107-114.	2.3	20
95	Effects of nanoTiO2–SiO2 on the hydrophilicity/dyeability of polyester fabric and photostability of disperse dyes under UV irradiation. Surface and Coatings Technology, 2014, 253, 185-193.	2.2	20
96	Systematic Evaluation of a Diclofenac-Loaded Carboxymethyl Cellulose-Based Wound Dressing and Its Release Performance with Changing pH and Temperature. AAPS PharmSciTech, 2019, 20, 29.	1.5	20
97	Processing and functional assessment of anisotropic cellulose nanofibril/Alolt/sodium silicate: based aerogels as flame retardant thermal insulators. Cellulose, 2020, 27, 1661-1683.	2.4	20
98	Tuning of cellulose fibres' structure and surface topography: Influence of swelling and various drying procedures. Carbohydrate Polymers, 2016, 148, 227-235.	5.1	19
99	Oneâ€Step Noncovalent Surface Functionalization of PDMS with Chitosanâ€Based Bioparticles and Their Proteinâ€Repellent Properties. Advanced Materials Interfaces, 2017, 4, 1700416.	1.9	19
100	Strengthening of paper by treatment with a suspension of alkaline nanoparticles stabilized by trimethylsilyl cellulose. Nano Structures Nano Objects, 2018, 16, 363-370.	1.9	19
101	In Vitro Haemocompatibility Evaluation of PET Surfaces Using the Quartz Crystal Microbalance Technique. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 697-714.	1.9	18
102	Physicochemical Properties and Bioactivity of a Novel Class of Cellulosics: 6â€Deoxyâ€6â€amino Cellulose Sulfate. Macromolecular Chemistry and Physics, 2012, 213, 539-548.	1.1	18
103	Selective immobilization and detection of DNA on biopolymer supports for the design of microarrays. Biosensors and Bioelectronics, 2015, 68, 437-441.	5.3	18
104	A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules. RSC Advances, 2019, 9, 21288-21301.	1.7	18
105	The Role of TiO ₂ Nanoparticles on the UV Protection Ability and Hydrophilicity of Polyamide Fabrics. Acta Physica Polonica A, 2015, 127, 943-946.	0.2	18
106	Polyurethanes for Medical Use. Tekstilec, 2017, 60, 182-197.	0.3	18
107	Synthesis of magnetic iron oxide particles: Development of an in situ coating procedure for fibrous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 400, 58-66.	2.3	17
108	Bio-nanofibrous mats as potential delivering systems of natural substances. Textile Reseach Journal, 2017, 87, 444-459.	1.1	17

#	Article	IF	CITATIONS
109	3D bioprinting of polysaccharides and their derivatives: From characterization to application. , 2018, , 105-141.		17
110	Impact of growth factors on wound healing in polysaccharide blend thin films. Applied Surface Science, 2019, 489, 485-493.	3.1	17
111	Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydrate Polymers, 2022, 280, 118875.	5.1	17
112	Plant-Derived Medicines with Potential Use in Wound Treatment. , 0, , .		16
113	Chemical Structure–Antioxidant Activity Relationship of Water–Based Enzymatic Polymerized Rutin and Its Wound Healing Potential. Polymers, 2019, 11, 1566.	2.0	16
114	Characterisation of modified polypropylene fibres. Journal of Materials Science, 2003, 38, 2167-2169.	1.7	15
115	Quantitative Determination Of Carboxyl Groups In Cellulose Polymers Utilizing Their Ion Exchange Capacity And Using A Complexometric Titration. Materials Research Innovations, 2004, 8, 145-146.	1.0	15
116	Interaction and Structure in Polyelectrolyte/Clay Multilayers: A QCM-D Study. Langmuir, 2013, 29, 8544-8553.	1.6	15
117	Morphology Transformations of Platelets on Plasma Activated Surfaces. Plasma Processes and Polymers, 2014, 11, 596-605.	1.6	15
118	Interaction and enrichment of protein on cationic polysaccharide surfaces. Colloids and Surfaces B: Biointerfaces, 2014, 123, 533-541.	2.5	15
119	Cellulose thin films from ionic liquid solutions. Nordic Pulp and Paper Research Journal, 2015, 30, 6-13.	0.3	15
120	The influence of structural and morphological changes on the electrokinetic properties of PA 6 fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 321-330.	2.3	14
121	Correlation between structure and adsorption characteristics of oriented polymers. Materials Research Innovations, 2001, 4, 197-203.	1.0	14
122	Organoclay particles as reinforcing agents in polysaccharide films. Journal of Colloid and Interface Science, 2010, 347, 74-78.	5.0	14
123	Oxygenâ€rich coating promotes binding of proteins and endothelialization of polyethylene terephthalate polymers. Journal of Biomedical Materials Research - Part A, 2014, 102, 2305-2314.	2.1	14
124	Ammonia plasma treatment as a method promoting simultaneous hydrophilicity and antimicrobial activity of viscose wound dressings. Textile Reseach Journal, 2014, 84, 140-156.	1.1	13
125	Comparison of Trimethylsilyl Cellulose-Stabilized Carbonate and Hydroxide Nanoparticles for Deacidification and Strengthening of Cellulose-Based Cultural Heritage. ACS Omega, 2020, 5, 29243-29256.	1.6	13
126	Electrokinetic properties of commercial vascular grafts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 17-26.	2.3	12

#	Article	IF	CITATIONS
127	Oscillating streaming potential measurement system for macroscopic surfaces. Review of Scientific Instruments, 2008, 79, 113902.	0.6	12
128	Use of polysaccharide based surfactants to stabilize organically modified clay particles aqueous dispersion. Carbohydrate Polymers, 2013, 94, 687-694.	5.1	12
129	Defluorination of Polytetrafluoroethylene Surface by Hydrogen Plasma. Polymers, 2020, 12, 2855.	2.0	12
130	Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science and Engineering, 2021, 7, 3618-3632.	2.6	12
131	Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. IScience, 2022, 25, 104263.	1.9	12
132	Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Open Chemistry, 2013, 11, 1786-1798.	1.0	11
133	Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance. Cellulose, 2018, 25, 537-547.	2.4	11
134	One-Step Fabrication of Hollow Spherical Cellulose Beads: Application in pH-Responsive Therapeutic Delivery. ACS Applied Materials & Interfaces, 2022, 14, 3726-3739.	4.0	11
135	Analysis of galactoglucomannans from spruce wood by capillary electrophoresis. Cellulose, 2009, 16, 1089-1097.	2.4	10
136	Charging Behavior and Stability of the Novel Amino Group Containing Cellulose Ester Celluloseâ€4â€{ <i>N</i> â€methylamino]butyrate Hydrochloride. Macromolecular Chemistry and Physics, 2012, 213, 1669-1676.	1.1	10
137	High oxygen barrier chitosan films neutralized by alkaline nanoparticles. Cellulose, 2021, 28, 10457-10475.	2.4	10
138	Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfaces. Nano Structures Nano Objects, 2020, 24, 100564.	1.9	10
139	Influence of Enzymatic Pretreatment on the Colours of Bleached and Dyed Flax Fibres. Journal of Natural Fibers, 2006, 3, 69-81.	1.7	9
140	Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose, 2012, 19, 2057-2067.	2.4	9
141	Film formation of ω-aminoalkylcellulose carbamates – A quartz crystal microbalance (QCM) study. Carbohydrate Polymers, 2015, 116, 111-116.	5.1	9
142	Water-based carbodiimide mediated synthesis of polysaccharide-amino acid conjugates: Deprotection, charge and structural analysis. Carbohydrate Polymers, 2021, 267, 118226.	5.1	9
143	Humidity Response of Cellulose Thin Films. Biomacromolecules, 2022, 23, 1148-1157.	2.6	9
144	Surface Properties of Structural Modified PA 6 Fibers. Macromolecular Materials and Engineering, 2002. 287. 296.	1.7	8

#	Article	IF	CITATIONS
145	Flax Fibers Sorption Properties Influenced by Different Pretreatment Processes. Journal of Natural Fibers, 2005, 2, 25-37.	1.7	8
146	Surface engineering of TiO2-MWCNT nanocomposites towards tuning of functionalities and minimizing toxicity. Journal of Sol-Gel Science and Technology, 2017, 83, 132-142.	1.1	8
147	Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran. Carbohydrate Polymers, 2017, 161, 1-9.	5.1	8
148	Protein repellent anti-coagulative mixed-charged cellulose derivative coatings. Carbohydrate Polymers, 2021, 254, 117437.	5.1	8
149	Investigations Into Amphiphilic Chitosan: Properties and Availability of Original and Newly Introduced Functional Groups. Macromolecular Chemistry and Physics, 2012, 213, 1582-1589.	1.1	7
150	Reactive cellulose-based thin films – a concept for multifunctional polysaccharide surfaces. RSC Advances, 2016, 6, 72378-72385.	1.7	7
151	Affinity of Serum Albumin and Fibrinogen to Cellulose, Its Hydrophobic Derivatives and Blends. Frontiers in Chemistry, 2019, 7, 581.	1.8	7
152	Electrokinetic properties of surface modified PETP fibres. Materials Research Innovations, 2002, 6, 19-23.	1.0	6
153	Surface Properties Of Lubricants And Hard Coatings As Predictors Of Frictional Behaviour Under Boundary Lubrication. Materials Research Innovations, 2006, 10, 284-298.	1.0	6
154	Bioactive Polysaccharide Materials for Modern Wound Healing. Springer Briefs in Molecular Science, 2018, , .	0.1	6
155	Surface Properties of Non-conventional Cellulose Fibres. Springer Briefs in Molecular Science, 2019, ,	0.1	6
156	Anticoagulant Activity of Cellulose Nanocrystals from Isora Plant Fibers Assembled on Cellulose and SiO2 Substrates via a Layer-by-Layer Approach. Polymers, 2021, 13, 939.	2.0	6
157	Solid Phase Peptide Synthesis on Chitosan Thin Films. Biomacromolecules, 2022, 23, 731-742.	2.6	6
158	Adsorption of Surfactants on Polymer Surfaces Investigated with a Novel Zeta-Potential Measurement System. Materials Science Forum, 2006, 514-516, 1374-1378.	0.3	5
159	Electrokinetic properties of polypropyleneâ€layered silicate nanocomposite fibers. Journal of Applied Polymer Science, 2009, 113, 1276-1281.	1.3	5
160	Deposition of silicon doped and pure hydrogenated amorphous carbon coatings on quartz crystal microbalance sensors for protein adsorption studies. Thin Solid Films, 2011, 520, 83-89.	0.8	5
161	Cellulose and Other Polysaccharides Surface Properties and Their Characterisation. , 2012, , 215-251.		5
162	Adsorption of Laponite on a Cellulose Model Surface. Macromolecular Symposia, 2012, 311, 28-32.	0.4	5

#	Article	IF	CITATIONS
163	Functional dextran amino acid ester particles derived from N-protected S-trityl-L-cysteine. Colloids and Surfaces B: Biointerfaces, 2019, 181, 561-566.	2.5	5
164	Immobilization of Water-Soluble 6-Carboxylcellulose on Poly(ethylene terephthalate) Films Monitored by a Quartz Crystal Microbalance with Dissipation. Industrial & Engineering Chemistry Research, 2013, 52, 7439-7444.	1.8	3
165	The effects of storage gases on the durability of ammonia plasma effects with respect to wound fluid absorption and the biostatic activity of viscose non-wovens. Textile Reseach Journal, 2014, 84, 751-763.	1.1	3
166	Utilization of Optical Polarization Microscopy in the Study of Sorption Characteristics of Wound Dressing Host Materials. Microscopy and Microanalysis, 2014, 20, 561-565.	0.2	3
167	Non-Equilibrium Plasma Methods for Tailoring Surface Properties of Polyvinylidene Fluoride: Review and Challenges. Polymers, 2021, 13, 4243.	2.0	3
168	The use of atomic force microscopy for imaging the surfaces of polyamide, 6. Macromolecular Symposia, 2002, 181, 467-478.	0.4	2
169	The influence of structural properties on the dye diffusion and dyeabilty of PA 6 fibres. Materials Research Innovations, 2003, 7, 358-365.	1.0	2
170	The Interaction Ability Of Cellulosic Materials As A Function Of Fine Structure And Helmholtz Surface Energy. Materials Research Innovations, 2005, 9, 17-18.	1.0	2
171	Measurements of Zeta Potential of Poly(Tetrafluoroethylene) Foils. Materials Science Forum, 2005, 480-481, 89-94.	0.3	2
172	Tribological interactions between DLC coatings and lubricants. TriboTest Journal: Tribology and Lubrication in Practice, 2008, 14, 81-95.	0.7	2
173	Etching rates of blood proteins, blood plasma and polymer in oxygen afterglow of microwave plasma. Surface and Interface Analysis, 2014, 46, 1115-1118.	0.8	2
174	Reactive Maleimido Dextran Thin Films for Cysteine-Containing Surfaces Adsorbing BSA. Macromolecular Chemistry and Physics, 2017, 218, 1600535.	1.1	2
175	Aspects of structural order in 209Bi-containing particles for potential MRI contrast agents based on quadrupole enhanced relaxation. Molecular Physics, 2019, 117, 935-943.	0.8	2
176	How can we understand the influence of nanoparticles on the coagulation of blood?. Nanomedicine, 2020, 15, 1923-1926.	1.7	2
177	Rapid Functionalization of Polytetrafluorethylene (PTFE) Surfaces with Nitrogen Functional Groups. Polymers, 2021, 13, 4301.	2.0	2
178	An Alternative Way to Monitor H2O2 Decomposition in Bleaching Solutions. Textile Reseach Journal, 1998, 68, 320-326.	1.1	1
179	Emerging Techniques in the Preparation of Wound Care Products. Springer Briefs in Molecular Science, 2018, , 25-38.	0.1	1
180	Active Substances for Acceleration of Wound Healing. Springer Briefs in Molecular Science, 2018, , 39-59.	0.1	1

KARIN STANA-KLEINSCHEK

#	Article	IF	CITATIONS
181	Polysaccharidesâ \in "An Interdisciplinary Open Access Journal for a Sustainable and Advanced Community. Polysaccharides, 2020, 1, 1-2.	2.1	1
182	Modification of Polyamide Knitted Fabric using Different Zeolites. Tekstilec, 2017, 60, 116-125.	0.3	1
183	Determination Of The Accessible Carboxyl And Amino End Groups In Structurally Modified PA 6 Using Titration Methods. Materials Research Innovations, 2005, 9, 8-9.	1.0	0
184	Structure and Properties of Non-conventional Cellulose Fibres. Springer Briefs in Molecular Science, 2019, , 49-59.	0.1	0
185	Design, Characterisation and Applications of Cellulose-Based Thin Films, Nanofibers and 3D Printed Structures: A Laboratory Manual. , 0, , .		0
186	Sol-gel/Ag coating and oxygen plasma treatment effect on synthetic wound fluid sorption by non-woven cellulose material. Tekstilec, 2017, 60, 25-28.	0.3	0
187	Safety and Efficiency Testing. Springer Briefs in Molecular Science, 2018, , 87-94.	0.1	0
188	Other Solutions to Achieve Desired Wound Healing Characteristics. Springer Briefs in Molecular Science, 2018, , 61-73.	0.1	0