Andreas Lindblad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792541/publications.pdf

Version: 2024-02-01

201385 214527 2,457 87 27 47 citations h-index g-index papers 88 88 88 3730 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi> Physical Review Letters, 2011, 107, 096802.</mml:mi></mml:msub></mml:math>	Se mml:	mi>≺mml:ran
2	Femtosecond Interatomic Coulombic Decay in Free Neon Clusters: Large Lifetime Differences between Surface and Bulk. Physical Review Letters, 2004, 93, 173401.	2.9	173
3	Electronic Structure of CH ₃ NH ₃ PbX ₃ Perovskites: Dependence on the Halide Moiety. Journal of Physical Chemistry C, 2015, 119, 1818-1825.	1.5	127
4	The electronic structure of free water clusters probed by Auger electron spectroscopy. Journal of Chemical Physics, 2005, 123, 054310.	1.2	80
5	Observation of resonant Interatomic Coulombic Decay in Ne clusters. Journal of Chemical Physics, 2005, 122, 241102.	1.2	72
6	Circularly Polarized X Rays: Another Probe of Ultrafast Molecular Decay Dynamics. Physical Review Letters, 2010, 105, 233001.	2.9	72
7	Defect formation in graphene during low-energy ion bombardment. APL Materials, 2016, 4, .	2.2	68
8	An HAXPES study of Sn, SnS, SnO and SnO2. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 195-199.	0.8	66
9	Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells. ACS Applied Materials & Solar Reversible Materials & Solar	4.0	65
10	Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. Journal of Physics Condensed Matter, 2021, 33, 233001.	0.7	55
11	Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 55-60.	0.8	49
12	Angle-resolved electron spectroscopy of the resonant Auger decay in xenon with meV energy resolution. New Journal of Physics, 2011, 13, 073014.	1.2	46
13	Understanding the effects of sputter damage in W–S thin films by HAXPES. Applied Surface Science, 2014, 305, 203-213.	3.1	42
14	Radial surface segregation in free heterogeneous argon/krypton clusters. Chemical Physics Letters, 2004, 392, 433-438.	1.2	41
15	A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles. Review of Scientific Instruments, 2013, 84, 113105.	0.6	37
16	Site-selective local fluorination of graphene induced by focused ion beam irradiation. Scientific Reports, 2016, 6, 19719.	1.6	36
17	Probing and Controlling Surface Passivation of PbS Quantum Dot Solid for Improved Performance of Infrared Absorbing Solar Cells. Chemistry of Materials, 2019, 31, 4081-4091.	3.2	34
18	Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy. Journal of Chemical Physics, 2007, 126, 214706.	1.2	33

#	Article	IF	CITATIONS
19	Low Dose Photoelectron Spectroscopy at BESSY II: Electronic structure of matter in its native state. Journal of Electron Spectroscopy and Related Phenomena. 2018, 224, 68-78. Photoelectron recoil induced rotation of the small math	0.8	33
20	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>B</mml:mi><mml:mspace width="0.2em" =""><mml:mmultiscripts><mml:mi>i£</mml:mi><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mprescripts =""><mml:none =""><mml:mn>2</mml:mn></mml:none></mml:mprescripts></mml:mmultiscripts></mml:mspace></mml:mrow> state	1.0	32
21	in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display-"inline" Auger Electron Spectroscopy as a Probe of the Solution of Aqueous Ions. Journal of the American Chemical Society, 2009, 131, 7264-7271.</mml:math>	6.6	31
22	Amorphous W–S–N thin films: The atomic structure behind ultra-low friction. Acta Materialia, 2015, 82, 84-93.	3.8	31
23	The far from equilibrium structure of argon clusters doped with krypton or xenon. Physical Chemistry Chemical Physics, 2006, 8, 1899-1905.	1.3	30
24	Size determination of free metal clusters by core-level photoemission from different initial charge states. Physical Review B, 2007, 76, .	1.1	30
25	Vibrational scattering anisotropy in O2—dynamics beyond the Born–Oppenheimer approximation. New Journal of Physics, 2012, 14, 113018.	1.2	30
26	Free nanoscale sodium clusters studied by core-level photoelectron spectroscopy. Physical Review B, 2007, 75, .	1.1	29
27	Charge delocalization dynamics of ammonia in different hydrogen bonding environments: free clusters and in liquid water solution. Physical Chemistry Chemical Physics, 2009, 11, 1758.	1.3	28
28	Preferential site occupancy observed in coexpanded argon-krypton clusters. Physical Review A, 2006, 74, .	1.0	27
29	The local structure of small water clusters: imprints on the core-level photoelectron spectrum. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 055201.	0.6	27
30	Surface modification of iron oxides by ion bombardment $\hat{a}\in$ Comparing depth profiling by HAXPES and Ar ion sputtering. Journal of Electron Spectroscopy and Related Phenomena, 2018, 224, 23-26.	0.8	27
31	A photoelectron spectroscopic study of aqueous tetrabutylammonium iodide. Journal of Physics Condensed Matter, 2007, 19, 326101.	0.7	26
32	Photochemical conversion of tin-oxo cage compounds studied using hard x-ray photoelectron spectroscopy. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2017, 16, 023510.	1.0	26
33	Early-stage decomposition of solid polymer electrolytes in Li-metal batteries. Journal of Materials Chemistry A, 2021, 9, 22462-22471.	5.2	26
34	Enhanced surface sensitivity in AES relative to XPS observed in free argon clusters. Surface Science, 2005, 594, 12-19.	0.8	23
35	Postcollision interaction in noble gas clusters: Observation of differences in surface and bulk line shapes. Journal of Chemical Physics, 2005, 123, 211101.	1.2	23
36	High photon energy spectroscopy of NiO: Experiment and theory. Physical Review B, 2016, 93, .	1.1	22

3

#	Article	IF	CITATIONS
37	Final state selection in the4pphotoemission of Rb by combining laser spectroscopy with soft-x-ray photoionization. Physical Review A, 2005, 72, .	1.0	21
38	First observation of vibrations in core-level photoelectron spectra of free neutral molecular clusters. Chemical Physics Letters, 2006, 429, 109-113.	1.2	18
39	Size of Free Neutral CO ₂ Clusters from Carbon 1s Ionization Energies. Journal of Physical Chemistry A, 2011, 115, 10408-10415.	1.1	18
40	Kagome-like silicene: A novel exotic form of two-dimensional epitaxial silicon. Applied Surface Science, 2020, 530, 147195.	3.1	18
41	Long‣asting Nonâ€hydrogenated Dark Titanium Dioxide: Medium Vacuum Anneal for Enhanced Visible Activity of Modified Multiphase Photocatalysts. ChemCatChem, 2018, 10, 2949-2954.	1.8	17
42	Preferential site occupancy of krypton atoms on free argon-cluster surfaces. Journal of Chemical Physics, 2006, 125, 014305.	1.2	16
43	Single-Molecule X-Ray Interferometry: Controlling Coupled Electron-Nuclear Quantum Dynamics and Imaging Molecular Potentials by Ultrahigh-Resolution Resonant Photoemission and <i>AbÂlnitio</i> Calculations. Physical Review X, 2013, 3, .	2.8	16
44	Femtosecond and Attosecond Electron-Transfer Dynamics in PCPDTBT:PCBM Bulk Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 12605-12614.	1.5	16
45	Magnetron-based source of neutral metal vapors for photoelectron spectroscopy. Review of Scientific Instruments, 2006, 77, 033106.	0.6	15
46	Direct observation of the non-supported metal nanoparticle electron density of states by X-ray photoelectron spectroscopy. European Physical Journal D, 2007, 45, 295-299.	0.6	15
47	Characterization of weakly excited final states by shakedown spectroscopy of laser-excited potassium. Physical Review A, 2006, 74, .	1.0	14
48	Valence photoelectron spectroscopy of N2 and CO: Recoil-induced rotational excitation, relative intensities, and atomic orbital composition of molecular orbitals. Journal of Chemical Physics, 2010, 133, 174312.	1.2	14
49	Growth of two-dimensional WS2 thin films by reactive sputtering. Vacuum, 2021, 188, 110205.	1.6	14
50	Shell-dependent core-level chemical shifts observed in free xenon clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 5225-5235.	0.6	12
51	3pvalence photoelectron spectrum of Ar clusters. Physical Review B, 2009, 79, .	1.1	12
52	Surface modification of SU-8 for metal/SU-8 adhesion using RF plasma treatment for application in thermopile detectors. Materials Research Express, 2015, 2, 086501.	0.8	12
53	Energy-Dependent Relative Cross Sections in Carbon 1s Photoionization: Separation of Direct Shake and Inelastic Scattering Effects in Single Molecules. Journal of Physical Chemistry A, 2019, 123, 7619-7636.	1.1	12
54	Tailoring ultra-fast charge transfer in MoS2. Physical Chemistry Chemical Physics, 2020, 22, 10335-10342.	1.3	12

#	Article	IF	CITATIONS
55	The CoESCA station at BESSY: Auger electron–photoelectron coincidences from surfaces demonstrated for Ag MNN. Journal of Electron Spectroscopy and Related Phenomena, 2021, 250, 147075.	0.8	12
56	loniclike energy structure of neutral core-excited states in free Kr clusters. Physical Review A, 2005, 72, .	1.0	11
57	Photon energy dependent intensity variations observed in Auger spectra of free argon clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 3321-3333.	0.6	11
58	Synchrotron radiation study of chloromethane clusters: Effects of polarizability and dipole moment on core level chemical shifts. Journal of Chemical Physics, 2007, 127, 024302.	1.2	10
59	Chemical shifts of small heterogeneous Ar/Xe clusters. Physical Review B, 2011, 83, .	1.1	10
60	New insight into the Auger decay process in O2: The coincidence perspective. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 234-243.	0.8	9
61	The role of molecular polarity in cluster local structure studied by photoelectron spectroscopy. Chemical Physics Letters, 2007, 435, 79-83.	1.2	8
62	Neighbor-induced photoelectron recapture in argon clusters: A photon-energy-dependent study of Auger spectra. Physical Review A, 2008, 78, .	1.0	8
63	The structure of mixed methanol/chloroform clusters from core-level photoelectron spectroscopy and modeling. New Journal of Chemistry, 2011, 35, 2564.	1.4	8
64	Phase control of iron oxides grown in nano-scale structures on FTO and Si(100): Hematite, maghemite and magnetite. Vacuum, 2015, 117, 85-90.	1.6	8
65	Minimizing sputter-induced damage during deposition of WS2 onto graphene. Applied Physics Letters, 2017, 110, .	1.5	8
66	Investigation of the spectral properties and magnetism of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3<td>nl:mbni.><td>ımksmsub></td></td></mml:mn></mml:msub></mml:math>	nl:mbni.> <td>ımksmsub></td>	ımksmsub>
67	Extreme ultraviolet photoemission of a tin-based photoresist. Applied Physics Letters, 2021, 118, .	1.5	8
68	Two size regimes of methanol clusters produced by adiabatic expansion. Journal of Chemical Physics, 2006, 125, 184303.	1.2	7
69	Quantitative analysis of plasmon excitations in hard x-ray photoelectron spectra of bulk black phosphorus. Applied Surface Science, 2020, 505, 144385.	3.1	7
70	Interlayer charge transfer in tin disulphide: Orbital anisotropy and temporal aspects. Physical Review B, 2020, 102, .	1.1	6
71	Wafer-sized WS ₂ monolayer deposition by sputtering. Nanoscale, 2022, 14, 6331-6338.	2.8	6
72	Localized versus delocalized excitations just above the 3d threshold in krypton clusters studied by Auger electron spectroscopy. Journal of Chemical Physics, 2007, 127, 124314.	1.2	5

#	Article	IF	CITATIONS
73	A method for studying pico to microsecond time-resolved core-level spectroscopy used to investigate electron dynamics in quantum dots. Scientific Reports, 2020, 10, 22438.	1.6	5
74	Electronic Structure Characterization of Crossâ€Linked Sulfur Polymers. ChemPhysChem, 2018, 19, 1041-1047.	1.0	4
75	Experimental evidence for molecular ultrafast dissociation in O2 clusters. European Physical Journal D, 2007, 42, 253-257.	0.6	3
76	A dose dependence study of O2 adsorbed on large Ar clusters. Journal of Chemical Physics, 2009, 130, 224305.	1.2	3
77	Investigation of the surface species during temperature dependent dehydrogenation of naphthalene on Ni(111). Journal of Chemical Physics, 2019, 150, 244704.	1.2	3
78	X-ray Induced Fragmentation of Protonated Cystine. Journal of Physical Chemistry A, 2022, 126, 1496-1503.	1.1	3
79	The geometric structure of pure SF6 and mixed Ar/SF6 clusters investigated by core level photoelectron spectroscopy. Surface Science, 2009, 603, 433-436.	0.8	2
80	HAXPES study of Sn core levels and their plasmon loss features. Results in Physics, 2014, 4, 168-169.	2.0	2
81	In Situ Formation of Ge Nanoparticles by Annealing of Al-Ge-N Thin Films Followed by HAXPES and XRD. Inorganic Chemistry, 2019, 58, 11100-11109.	1.9	2
82	The impact of chemical composition of halide surface ligands on the electronic structure and stability of lead sulfide quantum dot materials. Physical Chemistry Chemical Physics, 2022, , .	1.3	2
83	Adsorption of chloromethane molecules on free argon clusters. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 085102.	0.6	1
84	Suppression of the molecular ultra-fast dissociation in bromomethane clusters. Journal of Chemical Physics, 2014, 141, 224305.	1.2	1
85	Photochemical conversion of tin-oxo cage compounds studied using hard x-ray photoelectron spectroscopy. Proceedings of SPIE, 2017, , .	0.8	1
86	Energy dependent relative cross sections in carbon 1s photoionization. Journal of Physics: Conference Series, 2020, 1412, 152050.	0.3	0
87	Auger- and photoelectron coincidences of molecular O2 adsorbed on Ag(111). Journal of Electron Spectroscopy and Related Phenomena, 2022, 256, 147174 .	0.8	0