
Sheila MacNeil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress and opportunities for tissue-engineered skin. Nature, 2007, 445, 874-880.	13.7	935
2	Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 2017, 129, 188-198.	5.7	317
3	Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials, 2008, 29, 3091-3104.	5.7	212
4	Consensus Statement of the European Urology Association and the European Urogynaecological Association on the Use of Implanted Materials for Treating Pelvic Organ Prolapse and Stress Urinary Incontinence. European Urology, 2017, 72, 424-431.	0.9	165
5	Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin. Biomaterials, 2011, 32, 258-267.	5.7	65
6	A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. Materials, 2019, 12, 2643.	1.3	64
7	Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU International, 2013, 112, 674-685.	1.3	61
8	Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source?. Neurourology and Urodynamics, 2014, 33, 531-537.	0.8	61
9	Using <i>ex Ovo</i> Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomaterials Science and Engineering, 2019, 5, 3190-3200.	2.6	60
10	Binding Bacteria to Highly Branched Poly(<i>N</i> -isopropyl acrylamide) Modified with Vancomycin Induces the Coil-to-Globule Transition. Journal of the American Chemical Society, 2010, 132, 1736-1737.	6.6	55
11	Biomaterials for Pelvic Floor Reconstructive Surgery: How Can We Do Better?. BioMed Research International, 2015, 2015, 1-20.	0.9	50
12	Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 333-342.	1.0	48
13	Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourology and Urodynamics, 2012, 31, 13-21.	0.8	46
14	Decellularised baby spinach leaves and their potential use in tissue engineering applications: Studying and promoting neovascularisation. Journal of Biomaterials Applications, 2019, 34, 546-559.	1.2	43
15	Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomaterialia, 2016, 29, 188-197.	4.1	42
16	Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP. Nature Reviews Urology, 2019, 16, 675-689.	1.9	39
17	Demonstration of improved tissue integration and angiogenesis with an elastic, estradiol releasing polyurethane material designed for use in pelvic floor repair. Neurourology and Urodynamics, 2018, 37, 716-725.	0.8	38
18	Development of bilayer and trilayer nanofibrous/microfibrous scaffolds for regenerative medicine. Biomaterials Science, 2013, 1, 942.	2.6	37

SHEILA MACNEIL

#	Article	IF	CITATIONS
19	Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells, 2020, 9, 2450.	1.8	37
20	Highly Branched Polymers with Polymyxin End Groups Responsive to Pseudomonas aeruginosa. Biomacromolecules, 2011, 12, 1-5.	2.6	35
21	Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the InÂVivo Response to Meshes Implanted in Rabbits. Journal of Urology, 2016, 196, 261-269.	0.2	33
22	Monitoring Fibrous Scaffold Guidance of Three-Dimensional Collagen Organisation Using Minimally-Invasive Second Harmonic Generation. PLoS ONE, 2014, 9, e89761.	1,1	30
23	Sub-micron poly(N-isopropylacrylamide) particles as temperature responsive vehicles for the detachment and delivery of human cells. Soft Matter, 2009, 5, 4928.	1.2	28
24	Exploration of 2-deoxy-D-ribose and 17β-Estradiol as alternatives to exogenous VEGF to promote angiogenesis in tissue-engineered constructs. Regenerative Medicine, 2019, 14, 179-197.	0.8	28
25	Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Frontiers in Bioengineering and Biotechnology, 2019, 7, 451.	2.0	28
26	Acute <i>In Vivo</i> Response to an Alternative Implant for Urogynecology. BioMed Research International, 2014, 2014, 1-10.	0.9	27
27	Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of pelvic organ prolapse and stress urinary incontinence. Journal of Biomaterials Applications, 2016, 30, 1578-1588.	1.2	25
28	Recent advances in pelvic floor repair. F1000Research, 2019, 8, 778.	0.8	23
29	Application of Tissue Engineering to Pelvic Organ Prolapse and Stress Urinary Incontinence. LUTS: Lower Urinary Tract Symptoms, 2015, 7, 63-70.	0.6	22
30	Deoxy-sugar releasing biodegradable hydrogels promote angiogenesis and stimulate wound healing. Materials Today Communications, 2017, 13, 295-305.	0.9	22
31	Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomaterials Science, 2021, 9, 7297-7310.	2.6	22
32	A simple rockerâ€induced mechanical stimulus upregulates mineralization by human osteoprogenitor cells in fibrous scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 370-381.	1.3	21
33	Addition of 2-deoxy- <scp>d</scp> -ribose to clinically used alginate dressings stimulates angiogenesis and accelerates wound healing in diabetic rats. Journal of Biomaterials Applications, 2019, 34, 463-475.	1.2	20
34	2-deoxy-d-ribose (2dDR) upregulates vascular endothelial growth factor (VEGF) and stimulates angiogenesis. Microvascular Research, 2020, 131, 104035.	1.1	19
35	An Improved In Vivo Methodology to Visualise Tumour Induced Changes in Vasculature Using the Chick Chorionic Allantoic Membrane Assay. In Vivo, 2018, 32, 461-472.	0.6	18
36	Developing Repair Materials for Stress Urinary Incontinence to Withstand Dynamic Distension. PLoS ONE, 2016, 11, e0149971.	1.1	16

#	Article	IF	CITATIONS
37	Förster resonance energy transfer confirms the bacterial-induced conformational transition in		

4