Boon Mian Teo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792332/publications.pdf

Version: 2024-02-01

236612 301761 1,620 53 25 39 citations h-index g-index papers 56 56 56 2416 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering. Journal of Colloid and Interface Science, 2022, 607, 836-847.	5.0	8
2	Carbon dots as a †green†reagent to produce shape and size controlled gold nanoparticles for application in pollutant degradation. Colloids and Interface Science Communications, 2022, 46, 100571.	2.0	5
3	Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. Ultrasonics Sonochemistry, 2022, 86, 106041.	3.8	8
4	Next-Generation Colloidal Materials for Ultrasound Imaging Applications. Ultrasound in Medicine and Biology, 2022, 48, 1373-1396.	0.7	2
5	Mesoporous Polydopamine Nanobowls Toward Combined Chemo―and Photothermal Cancer Therapy. Particle and Particle Systems Characterization, 2022, 39, .	1.2	7
6	Exploring the transition of polydopamine-shelled perfluorohexane emulsion droplets into microbubbles using small- and ultra-small-angle neutron scattering. Physical Chemistry Chemical Physics, 2021, 23, 9843-9850.	1.3	7
7	Photothermally responsive Pickering emulsions stabilised by polydopamine nanobowls. Journal of Materials Chemistry B, 2021, 9, 8962-8970.	2.9	17
8	Ultrasound-assisted fabrication of acoustically active, erythrocyte membrane "bubbles― Ultrasonics Sonochemistry, 2021, 72, 105429.	3.8	5
9	Bowl-Shaped Mesoporous Polydopamine Nanoparticles for Size-Dependent Endocytosis into HeLa Cells. ACS Applied Nano Materials, 2021, 4, 9536-9546.	2.4	15
10	pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid and Polymer Science, 2021, 299, 1717-1728.	1.0	2
11	Norepinephrine derived carbon dots for live-cell imaging and effective hemoglobin determination. Soft Matter, 2021, 17, 6765-6772.	1.2	9
12	Synthesis and characterisation of polynorepinephrine-shelled microcapsules <i>via</i> an oil-in-water emulsion templating route. Journal of Materials Chemistry B, 2021, 9, 9575-9582.	2.9	6
13	Acoustically responsive polydopamine nanodroplets: A novel theranostic agent. Ultrasonics Sonochemistry, 2020, 60, 104782.	3.8	27
14	Controlling the Size and Polymorphism of Calcium Carbonate Hybrid Particles Using Natural Biopolymers. Crystal Growth and Design, 2020, 20, 645-652.	1.4	29
15	Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery. Journal of Materials Chemistry B, 2020, 8, 961-968.	2.9	20
16	Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chemical Communications, 2020, 56, 13907-13917.	2.2	11
17	Efficient Cellular Internalization and Transport of Bowlâ€Shaped Polydopamine Particles. Particle and Particle Systems Characterization, 2020, 37, 2000166.	1.2	11
18	Polynorepinephrine as an Efficient Antifouling-Coating Material and Its Application as a Bacterial Killing Photothermal Agent. ACS Applied Bio Materials, 2020, 3, 5880-5886.	2.3	12

#	Article	IF	Citations
19	Room temperature synthesis of block copolymer nano-objects with different morphologies <i>via</i> ultrasound initiated RAFT polymerization-induced self-assembly (sono-RAFT-PISA). Polymer Chemistry, 2020, 11, 3564-3572.	1.9	32
20	Spontaneous Adsorption of Graphene Oxide to Oil–Water and Air–Water Interfaces by Adsorption of Hydrotropes. Advanced Materials Interfaces, 2020, 7, 1901810.	1.9	11
21	Gasâ€Generating, pHâ€Responsive Calcium Carbonate Hybrid Particles with Biomimetic Coating for Contrastâ€Enhanced Ultrasound Imaging. Particle and Particle Systems Characterization, 2020, 37, 1900471.	1.2	24
22	Graphene oxide: a surfactant or particle?. Current Opinion in Colloid and Interface Science, 2019, 39, 98-109.	3.4	62
23	Biomedical applications of acoustically responsive phase shift nanodroplets: Current status and future directions. Ultrasonics Sonochemistry, 2019, 56, 37-45.	3.8	52
24	Microbubbles, Nanodroplets and Gas-Stabilizing Solid Particles for Ultrasound-Mediated Extravasation of Unencapsulated Drugs: An Exposure Parameter Optimization Study. Ultrasound in Medicine and Biology, 2019, 45, 954-967.	0.7	38
25	Gasâ€6tabilizing Gold Nanocones for Acoustically Mediated Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800184.	3.9	36
26	Recent advances in ultrasound-based transdermal drug delivery. International Journal of Nanomedicine, 2018, Volume 13, 7749-7763.	3.3	101
27	Ultrasoundâ€Enhanced siRNA Delivery Using Magnetic Nanoparticle‣oaded Chitosanâ€Deoxycholic Acid Nanodroplets. Advanced Healthcare Materials, 2017, 6, 1601246.	3.9	69
28	Magnetic Anisotropic Particles: Synthesis and Applications. , 2017, , 123-178.		0
29	Magnetic Anisotropic Particles: Toward Remotely Actuated Applications. Particle and Particle Systems Characterization, 2016, 33, 709-728.	1.2	98
30	Mixed poly(dopamine)/poly(<scp>l</scp> -lysine) (composite) coatings: from assembly to interaction with endothelial cells. Biomaterials Science, 2015, 3, 1188-1196.	2.6	17
31	Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers. Journal of Materials Chemistry B, 2015, 3, 4577-4584.	2.9	51
32	Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages. RSC Advances, 2015, 5, 97836-97840.	1.7	22
33	Biocatalytic Polymer Coatings: Onâ€Demand Drug Synthesis and Localized Therapeutic Effect under Dynamic Cell Culture Conditions. Small, 2014, 10, 1314-1324.	5.2	18
34	Liposome-containing polymer films and colloidal assemblies towards biomedical applications. Nanoscale, 2014, 6, 6426.	2.8	31
35	Liposomes equipped with poly(N-isopropyl acryl amide)-containing coatings as potential drug carriers. RSC Advances, 2014, 4, 44769-44776.	1.7	14
36	Recent progress of liposomes in nanomedicine. Journal of Materials Chemistry B, 2014, 2, 6686-6691.	2.9	28

#	Article	IF	CITATIONS
37	Poly(<i>N</i> -isopropylacrylamide)/Poly(dopamine) Capsules. Langmuir, 2014, 30, 5592-5598.	1.6	16
38	Cell response to PEGylated poly(dopamine) coated liposomes considering shear stress. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4838-4847.	1.1	38
39	Assembly of Poly(dopamine)/Poly(<i>N</i> -isopropylacrylamide) Mixed Films and Their Temperature-Dependent Interaction with Proteins, Liposomes, and Cells. Langmuir, 2013, 29, 10213-10222.	1.6	39
40	Highly-Branched Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) as a Component in Poly(dopamine) Films. Journal of Physical Chemistry B, 2013, 117, 10504-10512.	1.2	37
41	Cargo delivery to adhering myoblast cells from liposome-containing poly(dopamine) composite coatings. Biomaterials Science, 2013, 1, 1181.	2.6	24
42	Antimicrobial and Biosensing Ultrasound-Responsive Lysozyme-Shelled Microbubbles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 464-471.	4.0	31
43	Cholesterol – a biological compound as a building block in bionanotechnology. Nanoscale, 2013, 5, 89-109.	2.8	101
44	Sonochemical polymerization of miniemulsions in organic liquids/water mixtures. Physical Chemistry Chemical Physics, 2011, 13, 4095.	1.3	24
45	Sonochemical Synthesis of Magnetic Janus Nanoparticles. Langmuir, 2011, 27, 30-33.	1.6	65
46	Sonochemical Synthesis of ZnO Encapsulated Functional Nanolatex and its Anticorrosive Performance. Industrial & Engineering Chemistry Research, 2010, 49, 2200-2205.	1.8	42
47	Synthesis of Temperature Responsive Poly(<i>N</i> Journal of Physical Chemistry B, 2010, 114, 3178-3184.	1.2	41
48	Ultrasound-Assisted Preparation of Semiconductor/Polymer Photoanodes and Their Photoelectrochemical Properties. Journal of Physical Chemistry C, 2010, 114, 5148-5153.	1.5	27
49	High Intensity Ultrasound Initiated Polymerization of Butyl Methacrylate in Mini- and Microemulsions. Macromolecules, 2009, 42, 4479-4483.	2.2	25
50	Novel One-Pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation. Langmuir, 2009, 25, 2593-2595.	1.6	67
51	Ultrasound initiated miniemulsion polymerization of methacrylate monomers. Ultrasonics Sonochemistry, 2008, 15, 89-94.	3.8	91
52	Microemulsion Polymerizations via High-Frequency Ultrasound Irradiation. Journal of Physical Chemistry B, 2008, 112, 5265-5267.	1,2	36
53	Controlled Growth of Sonochemically Synthesized Gold Seed Particles in Aqueous Solutions Containing Surfactants. Australian Journal of Chemistry, 2005, 58, 667.	0.5	11