List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792295/publications.pdf Version: 2024-02-01

MINC HUANC

#	Article	IF	CITATIONS
1	Electromagnetic properties of graphene aerogels made by freeze-casting. Chemical Engineering Journal, 2022, 428, 131337.	6.6	24
2	Folding and Fracture of Single rystal Graphene Grown on a Cu(111) Foil. Advanced Materials, 2022, 34, e2110509.	11.1	11
3	Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO ₂ Electrocatalytic Reduction. ACS Nano, 2022, 16, 2110-2119.	7.3	82
4	Frustrated Lewis Pair Sites Boosting CO ₂ Photoreduction on Cs ₂ CuBr ₄ Perovskite Quantum Dots. ACS Catalysis, 2022, 12, 2915-2926.	5.5	94
5	Rapid Self-Decomposition of g-C ₃ N ₄ During Gas–Solid Photocatalytic CO ₂ Reduction and Its Effects on Performance Assessment. ACS Catalysis, 2022, 12, 4560-4570.	5.5	86
6	The Crystal Plane is not the Key Factor for CO ₂ â€ŧoâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie, 2022, 134, .	1.6	1
7	The Crystal Plane is not the Key Factor for CO ₂ â€ŧoâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	69
8	Interfacial Electrolyte Effects on Electrocatalytic CO ₂ Reduction. ACS Catalysis, 2022, 12, 331-362.	5.5	123
9	On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. Journal of Materials Chemistry A, 2022, 10, 14051-14059.	5.2	13
10	A general approach to composites containing nonmetallic fillers and liquid gallium. Science Advances, 2021, 7, .	4.7	65
11	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	4.6	25
12	Topochemical Intercalation of Graphitic Carbon Nitride with Alkali Metals in Ethylenediamine. Journal of Physical Chemistry C, 2021, 125, 9947-9955.	1.5	6
13	The Wetâ€Oxidation of a Cu(111) Foil Coated by Single Crystal Graphene. Advanced Materials, 2021, 33, e2102697.	11.1	17
14	Single-crystal, large-area, fold-free monolayer graphene. Nature, 2021, 596, 519-524.	13.7	205
15	Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation. Journal of Hazardous Materials, 2021, 420, 126577.	6.5	30
16	Multifunctional Macroassembled Graphene Nanofilms with High Crystallinity. Advanced Materials, 2021, 33, e2104195.	11.1	30
17	MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties. Journal of Materials Science, 2020, 55, 2482-2491.	1.7	39
18	On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Materials, 2020, 27, 17-24.	9.5	54

#	Article	IF	CITATIONS
19	Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nature Nanotechnology, 2020, 15, 59-66.	15.6	184
20	CVD Growth of Porous Graphene Foam in Film Form. Matter, 2020, 3, 487-497.	5.0	46
21	Stamping Fabrication of Flexible Planar Micro‣upercapacitors Using Porous Graphene Inks. Advanced Science, 2020, 7, 2001561.	5.6	49
22	Charge Density Depinning in Defective MoTe ₂ Transistor by Oxygen Intercalation. Advanced Functional Materials, 2020, 30, 2004880.	7.8	20
23	Ultrahigh Strength and Modulus Grapheneâ€Based Hybrid Carbons with ABâ€Stacked and Turbostratic Structures. Advanced Functional Materials, 2020, 30, 2005381.	7.8	13
24	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Đriven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	10.2	210
25	Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11, 2453.	5.8	394
26	Van der waals heterojunctions for catalysis. Materials Today Advances, 2020, 6, 100059.	2.5	23
27	Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates. Accounts of Chemical Research, 2020, 53, 800-811.	7.6	60
28	The Electromagnetic Absorption of a Na-Ethylenediamine Graphite Intercalation Compound. ACS Applied Materials & Interfaces, 2020, 12, 16841-16848.	4.0	12
29	Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nature Nanotechnology, 2020, 15, 289-295.	15.6	141
30	Singleâ€Atom Catalysts: Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070195.	10.2	4
31	Adlayerâ€Free Largeâ€Area Single Crystal Graphene Grown on a Cu(111) Foil. Advanced Materials, 2019, 31, e1903615.	11.1	89
32	Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework. Journal of the American Chemical Society, 2019, 141, 16884-16893.	6.6	51
33	Organic Radical-Linked Covalent Triazine Framework with Paramagnetic Behavior. ACS Nano, 2019, 13, 5251-5258.	7.3	43
34	Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2019, 544, 155-163.	5.0	63
35	Enhanced Supercapacitive Performance of MnCO ₃ @rGO in an Electrolyte with KI as Additive. ChemElectroChem, 2019, 6, 316-319.	1.7	15
36	Uniform growth of NiCo2S4 nanoflakes arrays on nickel foam for binder-free high-performance supercapacitors. Journal of Materials Science, 2019, 54, 4821-4830.	1.7	33

#	Article	IF	CITATIONS
37	Preparation of Porous Graphene@Mn ₃ O ₄ and Its Application in the Oxygen Reduction Reaction and Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 831-837.	3.2	65
38	Graphitization of graphene oxide films under pressure. Carbon, 2018, 132, 294-303.	5.4	84
39	Orientationâ€Đependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil. Advanced Materials, 2018, 30, 1706504.	11.1	60
40	Raman Spectral Band Oscillations in Large Graphene Bubbles. Physical Review Letters, 2018, 120, 186104.	2.9	43
41	Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science, 2018, 362, 1021-1025.	6.0	158
42	Unraveling Chemical Interactions between Titanium and Graphene for Electrical Contact Applications. ACS Applied Nano Materials, 2018, 1, 4828-4835.	2.4	6
43	Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. ACS Nano, 2018, 12, 6117-6127.	7.3	132
44	Camphorâ€Enabled Transfer and Mechanical Testing of Centimeterâ€Scale Ultrathin Films. Advanced Materials, 2018, 30, e1800888.	11.1	32
45	Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS Nano, 2018, 12, 5816-5825.	7.3	273
46	Engineering Ultrathin Co(OH) ₂ Nanosheets on Dandelion–like CuCo ₂ O ₄ Microspheres for Binderâ€Free Supercapacitors. ChemElectroChem, 2017, 4, 721-727.	1.7	77
47	Controlled Folding of Single Crystal Graphene. Nano Letters, 2017, 17, 1467-1473.	4.5	92
48	Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017, 29, 4546-4556.	3.2	63
49	Controlling the Thickness of Thermally Expanded Films of Graphene Oxide. ACS Nano, 2017, 11, 665-674.	7.3	55
50	Porous Two-Dimensional Monolayer Metal–Organic Framework Material and Its Use for the Size-Selective Separation of Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 28107-28116.	4.0	51
51	Nanolaminate of metallic glass and graphene with enhanced elastic modulus, strength, and ductility in tension. Scripta Materialia, 2017, 139, 63-66.	2.6	21
52	Carrierâ€Type Modulation and Mobility Improvement of Thin MoTe ₂ . Advanced Materials, 2017, 29, 1606433.	11.1	158
53	Graphene Coatings as Barrier Layers to Prevent the Water-Induced Corrosion of Silicate Glass. ACS Nano, 2016, 10, 9794-9800.	7.3	58
54	Sculpturing the Core towards Mesoporous Manganese Dioxides Nanosheets-Built Nanotubes for Pseudocapacitance. Electrochimica Acta, 2016, 187, 488-495.	2.6	27

#	Article	IF	CITATIONS
55	Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016, 10, 1404-1410.	7.3	69
56	Rational Design of Porous MnO2 Tubular Arrays via Facile and Templated Method for High Performance Supercapacitors. Electrochimica Acta, 2015, 154, 329-337.	2.6	56
57	MnO ₂ nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7855-7861.	5.2	105
58	Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2015, 26, 4212-4220.	1.1	24
59	Synthesis of Co ₃ O ₄ /SnO ₂ @MnO ₂ core–shell nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12852-12857.	5.2	111
60	Engineering birnessite-type MnO2 nanosheets on fiberglass for pH-dependent degradation of methylene blue. Journal of Physics and Chemistry of Solids, 2015, 83, 40-46.	1.9	50
61	Methanolysis of ammonia borane by shape-controlled mesoporous copper nanostructures for hydrogen generation. Dalton Transactions, 2015, 44, 1070-1076.	1.6	58
62	MnO ₂ -based nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21380-21423.	5.2	817
63	Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015, 277, 36-43.	4.0	154
64	Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes. Electrochimica Acta, 2015, 152, 172-177.	2.6	85
65	One-pot synthesis of hierarchical MnO2-modified diatomites forÂelectrochemical capacitor electrodes. Journal of Power Sources, 2014, 246, 449-456.	4.0	147
66	Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. Journal of Power Sources, 2014, 252, 98-106.	4.0	354
67	Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors. Journal of Power Sources, 2014, 270, 675-683.	4.0	54
68	Facile synthesis of Co3O4@NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceramics International, 2014, 40, 15641-15646.	2.3	46
69	Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2014, 269, 760-767.	4.0	159
70	Hierarchical NiO nanoflake coated CuO flower core–shell nanostructures for supercapacitor. Ceramics International, 2014, 40, 5533-5538.	2.3	91
71	Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm, 2014, 16, 2878-2884.	1.3	135
72	Hierarchical NiO moss decorated diatomites via facile and templated method for high performance supercapacitors. Materials Letters, 2014, 120, 263-266.	1.3	31

#	Article	IF	CITATIONS
73	Facile synthesis of ATO/MnO2 core–shell architectures for electrochemical capacitive energy storage. Ceramics International, 2014, 40, 10309-10315.	2.3	10
74	Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 4518.	1.6	219
75	Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 3878.	1.6	285
76	Decoration of Cu nanowires with chemically modified TiO2 nanoparticles for their improved photocatalytic performance. Journal of Materials Science, 2013, 48, 6728-6736.	1.7	12
77	One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Materials Letters, 2013, 112, 203-206.	1.3	69
78	ONE-STEP AND CONTROLLABLE SELF-ASSEMBLY OF Au/TiO₂ /CARBON SPHERES TERNARY NANOCOMPOSITES WITH A NANOPARTICLE MONOSHELL WALL. Nano, 2012, 07, 1250025.	0.5	6
79	Suspended hybrid films assembled from thiol-capped gold nanoparticles. Nanoscale Research Letters, 2012, 7, 295.	3.1	5