Michael Mendillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6792036/publications.pdf

Version: 2024-02-01

120 4,354 40 61
papers citations h-index g-index

122 122 2719
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The ionosphere of Mars from solar minimum to solar maximum: Dayside electron densities from MAVEN and Mars Global Surveyor radio occultations. Icarus, 2023, 393, 114508.	2.5	7
2	The Martian ionosphere at solar minimum: Empirical model validation using MAVEN ROSE data. Icarus, 2023, 393, 114609.	2.5	0
3	Mars' plasma system. Scientific potential of coordinated multipoint missions: "The next generation― Experimental Astronomy, 2022, 54, 641-676.	3.7	9
4	Jupiter's Enigmatic Ionosphere: Electron Density Profiles From the Pioneer, Voyager, and Galileo Radio Occultation Experiments. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
5	Longâ€Term Observations and Physical Processes in the Moon's Extended Sodium Tail. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006671.	3.6	7
6	On the Altitude Patterns of Photoâ€Chemicalâ€Equilibrium in the Martian Ionosphere: A Special Role for Electron Temperature. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	3
7	Mesospheric Gravity Wave Momentum Flux Associated With a Large Thunderstorm Complex. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033381.	3.3	4
8	Mars' Ionopause: A Matter of Pressures. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028145.	2.4	35
9	The ionosphere of Venus: Strongest control by photo-chemical-equilibrium in the solar system, with implications for exospheric temperatures. Icarus, 2020, 349, 113870.	2.5	2
10	The future of the ionosphere (according to us…). , 2020, , 313-315.		0
11	Simultaneous Observations of SAR Arc and Its Ionospheric Response at Subauroral Conjugate Points (LÂâ $\%$ fÂ2.5) During the St. Patrick's Day Storm in 2015. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027321.	2.4	6
12	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	47
13	The MAVEN Radio Occultation Science Experiment (ROSE). Space Science Reviews, 2020, 216, 1.	8.1	26
14	Modeling Stable Auroral Red (SAR) Arcs at Geomagnetic Conjugate Points: Implications for Hemispheric Asymmetries in Heat Fluxes. Journal of Geophysical Research: Space Physics, 2019, 124, 6330-6342.	2.4	8
15	First Conjugate Observations of Mediumâ€Scale Traveling Ionospheric Disturbances (MSTIDs) in the Europeâ€Africa Longitude Sector. Journal of Geophysical Research: Space Physics, 2019, 124, 2213-2222.	2.4	18
16	First Groundâ€Based Conjugate Observations of Stable Auroral Red (SAR) Arcs. Journal of Geophysical Research: Space Physics, 2019, 124, 4658-4671.	2.4	12
17	The ionospheres of planets and exoplanets. Astronomy and Geophysics, 2019, 60, 1.25-1.30.	0.2	3
18	Atmospheric Waves and Their Possible Effect on the Thermal Structure of Saturn's Thermosphere. Geophysical Research Letters, 2019, 46, 2372-2380.	4.0	20

#	Article	IF	Citations
19	First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE). Journal of Geophysical Research: Space Physics, 2018, 123, 4171-4180.	2.4	35
20	Atomic oxygen ions as ionospheric biomarkers on exoplanets. Nature Astronomy, 2018, 2, 287-291.	10.1	9
21	Space Weather Nowcasting for Areaâ€Denied Locations: Testing Allâ€Sky Imaging Applications at Geomagnetic Conjugate Points. Space Weather, 2018, 16, 47-56.	3.7	6
22	Comparative ionospheres: Terrestrial and giant planets. Icarus, 2018, 303, 34-46.	2.5	4
23	All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites. Advances in Space Research, 2018, 61, 1636-1651.	2.6	31
24	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
25	Flares at Earth and Mars: An Ionospheric Escape Mechanism?. Space Weather, 2018, 16, 1042-1056.	3.7	10
26	Mars Initial Reference Ionosphere (MIRI) Model: Updates and Validations Using MAVEN, MEX, and MRO Data Sets. Journal of Geophysical Research: Space Physics, 2018, 123, 5674-5683.	2.4	12
27	MAVEN and the total electron content of the Martian ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 3526-3537.	2.4	12
28	Characterization of a Double Mesospheric Bore Over Europe. Journal of Geophysical Research: Space Physics, 2017, 122, 9738-9750.	2.4	20
29	The First Use of Coordinated Ionospheric Radio and Optical Observations Over Italy: Convergence of Highâ€and Lowâ€Latitude Stormâ€Induced Effects. Journal of Geophysical Research: Space Physics, 2017, 122, 11,794.	2.4	7
30	The Total Electron Content of the Martian Ionosphere From MRO/SHARAD Observations. Journal of Geophysical Research E: Planets, 2017, 122, 2182-2192.	3.6	9
31	Sources of Ionospheric Variability at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 9670-9684.	2.4	40
32	SAR arcs we have seen: Evidence for variability in stable auroral red arcs. Journal of Geophysical Research: Space Physics, 2016, 121, 245-262.	2.4	27
33	Reply to comment by Kil et al. on "The night when the auroral and equatorial ionospheres converged― Journal of Geophysical Research: Space Physics, 2016, 121, 10,608-10,613.	2.4	2
34	Comparative aeronomy: Molecular ionospheres at Earth and Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 10,269-10,288.	2.4	7
35	A stable auroral red (SAR) arc with multiple emission features. Journal of Geophysical Research: Space Physics, 2016, 121, 10,564.	2.4	12
36	Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2â€D ionospheric model. Journal of Geophysical Research: Space Physics, 2015, 120, 766-777.	2.4	46

#	Article	IF	CITATIONS
37	Why the Viking descent probes found only one ionospheric layer at Mars. Geophysical Research Letters, 2015, 42, 7359-7365.	4.0	9
38	Allâ€sky imaging of transglobal thermospheric gravity waves generated by the March 2011 Tohoku Earthquake. Journal of Geophysical Research: Space Physics, 2015, 120, 10,992.	2.4	19
39	The equivalent slab thickness of Mars' ionosphere: Implications for thermospheric temperature. Geophysical Research Letters, 2015, 42, 3560-3568.	4.0	8
40	MAVEN and the Mars Initial Reference Ionosphere model. Geophysical Research Letters, 2015, 42, 9080-9086.	4.0	15
41	The night when the auroral and equatorial ionospheres converged. Journal of Geophysical Research: Space Physics, 2015, 120, 8085-8095.	2.4	24
42	Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 2014, 227, 78-88.	2.5	60
43	Are ionospheric storms the same during different solar cycles?. Journal of Geophysical Research: Space Physics, 2013, 118, 6795-6805.	2.4	6
44	Variability in ionospheric total electron content at Mars. Planetary and Space Science, 2013, 86, 117-129.	1.7	16
45	The composition of Mars' topside ionosphere: Effects of hydrogen. Journal of Geophysical Research: Space Physics, 2013, 118, 2681-2693.	2.4	61
46	Imaging space weather over Europe. Space Weather, 2013, 11, 69-78.	3.7	13
47	Imaging magnetospheric boundaries at ionospheric heights. Journal of Geophysical Research: Space Physics, 2013, 118, 7294-7305.	2.4	14
48	A new semiempirical model of the peak electron density of the Martian ionosphere. Geophysical Research Letters, 2013, 40, 5361-5365.	4.0	37
49	Comet Giacobini-Zinner: Comparison of a Post-Encounter Image with In-Situ and Groundbased Observations. Special Publications, 2013, , 880-883.	0.0	0
50	Escape rates and variability constraints for highâ€energy sodium sources at Mercury. Journal of Geophysical Research, 2012, 117, .	3.3	27
51	All-sky imaging observations of conjugate medium-scale traveling ionospheric disturbances in the American sector. Journal of Geophysical Research, 2011, 116 , .	3.3	32
52	Response of Saturn's auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	50
53	Modeling Mars' ionosphere with constraints from same-day observations by Mars Global Surveyor and Mars Express. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	72
54	The Appearance of the Medicean Moons in 17 th Century Charts and Booksâ€"How Long Did It Take?. Proceedings of the International Astronomical Union, 2010, 6, 33-41.	0.0	0

#	Article	IF	CITATIONS
55	Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo. Geophysical Research Letters, 2010, 37, .	4.0	80
56	Latitudinal variations in Saturn's ionosphere: Cassini measurements and model comparisons. Journal of Geophysical Research, 2010, 115 , .	3.3	55
57	The sodium tail of the Moon. Icarus, 2009, 204, 409-417.	2.5	30
58	The Use of Small Telescopes for Spectral Imaging of Low-light-level Extended Atmospheres in the Solar System. Earth, Moon and Planets, 2009, 105, 107-113.	0.6	6
59	Day-by-day modelling of the ionospheric F2-layer for year 2002. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 848-856.	1.6	24
60	Brightening of 630.0 nm equatorial spreadâ€F airglow depletions. Journal of Geophysical Research, 2009, 114, .	3.3	39
61	Evidence of mesospheric gravityâ€waves generated by orographic forcing in the troposphere. Geophysical Research Letters, 2009, 36, .	4.0	48
62	Solar primary and secondary ionization at Saturn. Journal of Geophysical Research, 2009, 114, .	3.3	48
63	Solar System Ionospheres. Space Science Reviews, 2008, 139, 235-265.	8.1	48
64	Imaging the sources and full extent of the sodium tail of the planet Mercury. Geophysical Research Letters, 2008, 35, .	4.0	35
65	Plasma temperatures in Saturn's ionosphere. Journal of Geophysical Research, 2008, 113, .	3.3	41
66	Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. Journal of Geophysical Research, 2008, 113, .	3.3	66
67	Manâ€made space weather. Space Weather, 2008, 6, .	3.7	32
68	Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?. Geophysical Research Letters, 2007, 34, .	4.0	29
69	A very bright SAR arc: implications for extreme magnetosphere-ionosphere coupling. Annales Geophysicae, 2007, 25, 2593-2608.	1.6	42
70	The sources of sodium escaping from lo revealed by spectral high definition imaging. Nature, 2007, 448, 330-332.	27.8	20
71	Equatorial spread Fâ \in related airglow depletions at Arecibo and conjugate observations. Journal of Geophysical Research, 2007, 112, .	3.3	44
72	Characterization of exceptionally strong mesospheric wave events using all-sky and zenith airglow observations. Journal of Geophysical Research, 2006, 111, .	3.3	25

#	Article	lF	CITATIONS
73	Magnetospheric influence on the Moon's exosphere. Journal of Geophysical Research, 2006, 111, .	3.3	45
74	Day-to-day variability of theElayer. Journal of Geophysical Research, 2006, 111, .	3.3	22
75	Storms in the ionosphere: Patterns and processes for total electron content. Reviews of Geophysics, 2006, 44, .	23.0	415
76	Total electron content: Synthesis of past storm studies and needed future work. Radio Science, 2006, 41, .	1.6	37
77	Cassini radio occultations of Saturn's ionosphere: Model comparisons using a constant water flux. Geophysical Research Letters, 2006, 33, .	4.0	46
78	Effects of Solar Flares on the Ionosphere of Mars. Science, 2006, 311, 1135-1138.	12.6	147
79	Response of peak electron densities in the martian ionosphere to day-to-day changes in solar flux due to solar rotation. Planetary and Space Science, 2005, 53, 1401-1418.	1.7	63
80	Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions. Journal of Geophysical Research, 2005, 110 , .	3.3	43
81	Effects of ring shadowing on the detection of electrostatic discharges at Saturn. Geophysical Research Letters, 2005, 32, .	4.0	20
82	Ionospheric contribution to Saturn's inner plasmasphere. Journal of Geophysical Research, 2005, 110, .	3.3	7
83	lonospheric characteristics above Martian crustal magnetic anomalies. Geophysical Research Letters, 2005, 32, .	4.0	69
84	Modeling of global variations and ring shadowing in Saturn's ionosphere. Icarus, 2004, 172, 503-520.	2.5	82
85	Ionospheric layers of Mars and Earth. Planetary and Space Science, 2004, 52, 849-852.	1.7	63
86	Ionospheric effects upon a satellite navigation system at Mars. Radio Science, 2004, 39, n/a-n/a.	1.6	34
87	Latitude dependence of zonal plasma drifts obtained from dual-site airglow observations. Journal of Geophysical Research, 2003, 108, .	3.3	92
88	A multidiagnostic investigation of the mesospheric bore phenomenon. Journal of Geophysical Research, 2003, 108, .	3.3	83
89	The outer limits of the lunar sodium exosphere. Geophysical Research Letters, 2003, 30, .	4.0	15
90	Simultaneous ionospheric variability on Earth and Mars. Journal of Geophysical Research, 2003, 108, .	3.3	61

#	Article	IF	Citations
91	The application of terrestrial aeronomy groundbased instruments to planetary studies. Geophysical Monograph Series, 2002, , 329-337.	0.1	O
92	Polarization jet events and excitation of weak SAR arcs. Geophysical Research Letters, 2002, 29, 26-1.	4.0	20
93	Suppression of equatorial spreadFby sporadicE. Journal of Geophysical Research, 2002, 107, SIA 4-1-SIA 4-5.	3.3	44
94	Solar system ionospheres. Geophysical Monograph Series, 2002, , 39-54.	0.1	27
95	Monitoring the moon's transient atmosphere with an all-sky imager. Advances in Space Research, 2001, 27, 1181-1187.	2.6	17
96	The 1999 Quadrantids and the lunar Na atmosphere. Monthly Notices of the Royal Astronomical Society, 2001, 327, 244-248.	4.4	21
97	The application of GPS observations to equatorial aeronomy. Radio Science, 2000, 35, 885-904.	1.6	115
98	Equatorial F region irregularity morphology during an equinoctial month at solar minimum. Space Science Reviews, 1999, 87, 357-386.	8.1	11
99	Lunam 2000 (Lunar Atmosphere Mission). Earth, Moon and Planets, 1999, 85/86, 487-495.	0.6	0
100	The Atmosphere Of The Moon. Earth, Moon and Planets, 1999, 85/86, 271-277.	0.6	4
101	Observational Test for the Solar Wind Sputtering Origin of the Moon's Extended Sodium Atmosphere. Icarus, 1999, 137, 13-23.	2.5	67
102	Modeling an enhancement of the lunar sodium tail during the Leonid Meteor Shower of 1998. Geophysical Research Letters, 1999, 26, 1645-1648.	4.0	51
103	Discovery of the distant lunar sodium tail and its enhancement following the Leonid Meteor Shower of 1998. Geophysical Research Letters, 1999, 26, 1649-1652.	4.0	79
104	Three tails of comet Hale-Bopp. Geophysical Research Letters, 1998, 25, 225-228.	4.0	30
105	GPS phase fluctuations in the equatorial region during sunspot minimum. Radio Science, 1997, 32, 1535-1550.	1.6	96
106	Modeling the Moon's extended sodium cloud as a tool for investigating sources of transient atmospheres. Advances in Space Research, 1997, 19, 1577-1586.	2.6	18
107	Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse. Nature, 1995, 377, 404-406.	27.8	52
108	Simulations of the lunar sodium atmosphere. Journal of Geophysical Research, 1995, 100, 23271.	3.3	25

#	Article	IF	CITATIONS
109	A Picture of the Moon's Atmosphere. Science, 1993, 261, 184-186.	12.6	45
110	Imaging observations of the extended sodium atmosphere of the Moon. Geophysical Research Letters, 1991, 18, 2097-2100.	4.0	48
111	The extended sodium nebula of Jupiter. Nature, 1990, 348, 312-314.	27.8	91
112	Optical observations of the AMPTE artificial comet from the Northern Hemisphere. Nature, 1986, 320, 704-708.	27.8	25
113	Simulation studies of ionospheric airglow signatures of plasma depletions at the equator. Journal of Atmospheric and Solar-Terrestrial Physics, 1985, 47, 885-893.	0.9	20
114	Preliminary report on the HEAO hole in the ionosphere. Eos, 1980, 61, 529.	0.1	21
115	Opportunity to observe a largeâ€scale hole in the ionosphere. Eos, 1979, 60, 513-514.	0.1	11
116	Low frequency radio astronomy through an artificially created ionospheric window. Nature, 1975, 255, 42-44.	27.8	18
117	Behavior of the ionospheric <i>F</i> region during the Great Solar Flare of August 7, 1972. Journal of Geophysical Research, 1974, 79, 665-672.	3.3	88
118	Incoherent scatter observations of the ionospheric response to a large solar flare. Radio Science, 1974, 9, 197-203.	1.6	57
119	Ionospheric Total Electron Content Behaviour during Geomagnetic Storms. Nature: Physical Science, 1971, 234, 23-24.	0.8	11
120	Midlatitude Ionospheric Dynamics and Disturbances: Introduction. Geophysical Monograph Series, 0, , 1-7.	0.1	5