List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6791616/publications.pdf Version: 2024-02-01

DETED I F HENDERSON

#	Article	IF	CITATIONS
1	Physiological Functions of Bacterial "Multidrug―Efflux Pumps. Chemical Reviews, 2021, 121, 5417-5478.	23.0	78
2	â€~Carbon-Monoxide-Releasing Molecule-2 (CORM-2)' Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects. Antioxidants, 2021, 10, 915.	2.2	30
3	Increasing the PACE of characterising novel transporters by functional genomics. Current Opinion in Microbiology, 2021, 64, 1-8.	2.3	5
4	Short-chain diamines are the physiological substrates of PACE family efflux pumps. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18015-18020.	3.3	21
5	Structure, Substrate Recognition, and Mechanism of the Na+-Hydantoin Membrane Transport Protein, Mhp1. , 2019, , 1-12.		0
6	Membrane Transport Proteins: The Amino Acid-Polyamine-Organocation (APC) Superfamily. , 2019, , 1-8.		0
7	Structure, Substrate Recognition, and Mechanism of the Na+-Hydantoin Membrane Transport Protein, Mhp1. , 2019, , 1-12.		0
8	Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Research in Microbiology, 2018, 169, 450-454.	1.0	77
9	Microbial expression systems for membrane proteins. Methods, 2018, 147, 3-39.	1.9	57
10	Membrane Transport Proteins: The Nucleobase-Cation-Symport-1 Family. , 2018, , 1-7.		0
11	Production of membrane proteins for characterisation of their pheromone-sensing and antimicrobial resistance functions. European Biophysics Journal, 2018, 47, 723-737.	1.2	5
12	Membrane Transport: Energetics and Overview. , 2018, , 1-13.		0
13	A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biology, 2018, 18, 114-123.	3.9	77
14	Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. ELife, 2018, 7, .	2.8	45
15	Membrane Transport Proteins: The Nucleobase-Cation-Symport-1 Family. , 2018, , 1-7.		0
16	Membrane Transport Proteins: The Nucleobase-Cation-Symport-1 Family. , 2018, , 1-7.		0
17	Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry. Analytical Chemistry, 2017, 89, 8844-8852.	3.2	28
18	The putative drug efflux systems of the Bacillus cereus group. PLoS ONE, 2017, 12, e0176188.	1.1	11

#	Article	IF	CITATIONS
19	Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity. Microbiology (United Kingdom), 2016, 162, 823-836.	0.7	40
20	Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions. Biochemical Society Transactions, 2016, 44, 810-823.	1.6	14
21	Bacillus cereus efflux protein BC3310 – a multidrug transporter of the unknown major facilitator family, UMF-2. Frontiers in Microbiology, 2015, 6, 1063.	1.5	10
22	Amphipols Outperform Dodecylmaltoside Micelles in Stabilizing Membrane Protein Structure in the Gas Phase. Analytical Chemistry, 2015, 87, 1118-1126.	3.2	50
23	An ace up their sleeve: a transcriptomic approach exposes the Acel efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Frontiers in Microbiology, 2015, 6, 333.	1.5	35
24	Homologs of the Acinetobacter baumannii Acel Transporter Represent a New Family of Bacterial Multidrug Efflux Systems. MBio, 2015, 6, .	1.8	138
25	A Tribute to Stephen Allan Baldwin. Molecular Membrane Biology, 2015, 32, 33-34.	2.0	Ο
26	Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO Journal, 2014, 33, 1831-1844.	3.5	79
27	A systematic approach to the amplified expression, functional characterization and purification of inositol transporters fromBacillus subtilis. Molecular Membrane Biology, 2013, 30, 3-14.	2.0	13
28	An Efficient Strategy for Small-Scale Screening and Production of Archaeal Membrane Transport Proteins in Escherichia coli. PLoS ONE, 2013, 8, e76913.	1.1	21
29	Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20254-20259.	3.3	138
30	Mhp1, the Na+-Hydantoin Membrane Transport Protein. , 2013, , 1514-1521.		4
31	BC4707 Is a Major Facilitator Superfamily Multidrug Resistance Transport Protein from Bacillus cereus Implicated in Fluoroquinolone Tolerance. PLoS ONE, 2012, 7, e36720.	1.1	20
32	Overcoming barriers to membrane protein structure determination. Nature Biotechnology, 2011, 29, 335-340.	9.4	325
33	The alternating access mechanism of transport asÂobserved in the sodium-hydantoin transporter Mhp1. Journal of Synchrotron Radiation, 2011, 18, 20-23.	1.0	42
34	The MFS Efflux Proteins of Gramâ€Positive and Gramâ€Negative Bacteria. Advances in Enzymology and Related Areas of Molecular Biology, 2011, 77, 147-166.	1.3	10
35	Defining topological features of membrane proteins by nanoelectrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 276-284.	0.7	12
36	Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1. Science, 2010, 328, 470-473.	6.0	283

#	Article	IF	CITATIONS
37	The sodiumâ€dependent <scp>d</scp> â€glucose transport protein of <i>Helicobacter pylori</i> . Molecular Microbiology, 2009, 71, 391-403.	1.2	28
38	The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochemical and Biophysical Research Communications, 2009, 380, 338-342.	1.0	70
39	Expression, purification and activities of the entire family of intact membrane sensor kinases from <i>Enterococcus faecalis</i> . Molecular Membrane Biology, 2008, 25, 449-473.	2.0	27
40	Structure and Molecular Mechanism of a Nucleobase–Cation–Symport-1 Family Transporter. Science, 2008, 322, 709-713.	6.0	347
41	Reliable scale-up of membrane protein over-expression by bacterial auto-induction: From microwell plates to pilot scale fermentations. Molecular Membrane Biology, 2008, 25, 588-598.	2.0	21
42	A genomic strategy for cloning, expressing and purifying efflux proteins of the major facilitator superfamily. Journal of Antimicrobial Chemotherapy, 2007, 59, 1265-1270.	1.3	14
43	Metabolism of glutamine and glutathione via γ-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism. Molecular Microbiology, 2007, 64, 396-406.	1.2	102
44	A high-throughput method for membrane protein solubility screening: The ultracentrifugation dispersity sedimentation assay. Protein Science, 2007, 16, 1422-1428.	3.1	59
45	Redox-responsive in vitro modulation of the signalling state of the isolated PrrB sensor kinase ofRhodobacter sphaeroidesNCIB 8253. FEBS Letters, 2006, 580, 3206-3210.	1.3	9
46	Topological analyses of the l-fucose-H+ symport protein, FucP, from Escherichia coli. Molecular Microbiology, 2006, 15, 771-783.	1.2	16
47	Isolation of Escherichia coli inner membranes by metal affinity two-phase partitioning. Journal of Chromatography A, 2006, 1118, 244-252.	1.8	38
48	Microbial Drug Efflux Proteins of the Major Facilitator Superfamily. Current Drug Targets, 2006, 7, 793-811.	1.0	87
49	The Hydantoin Transport Protein from Microbacterium liquefaciens. Journal of Bacteriology, 2006, 188, 3329-3336.	1.0	49
50	The gusBC Genes of Escherichia coli Encode a Glucuronide Transport System. Journal of Bacteriology, 2005, 187, 2377-2385.	1.0	61
51	Antibiotic resistance: multidrug efflux proteins, a common transport mechanism?. Natural Product Reports, 2005, 22, 439.	5.2	44
52	13th IIS(UK group) symposium. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 299-334.	0.5	3
53	Cloning, expression, purification and properties of a putative multidrug resistance efflux protein from Helicobacter pylori. International Journal of Antimicrobial Agents, 2003, 22, 242-249.	1.1	13
54	Collection and characterisation of bacterial membrane proteins. FEBS Letters, 2003, 555, 170-175.	1.3	33

4

#	Article	IF	CITATIONS
55	Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose‒H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-13C]histidine and 15NH3. Biochemical Journal, 2002, 363, 243.	1.7	15
56	Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose–H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-13C]histidine and 15NH3. Biochemical Journal, 2002, 363, 243-252.	1.7	33
57	Expression, Purification and Characterisation of Full-length Histidine Protein Kinase RegB from Rhodobacter sphaeroides. Journal of Molecular Biology, 2002, 320, 201-213.	2.0	57
58	Specific spin labelling of the sugar-H + symporter, GalP, in cell membranes of Escherichia coli : site mobility and overall rotational diffusion of the protein. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 464-473.	1.4	9
59	Cysteine residues in the d-galactose‒H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. Biochemical Journal, 2001, 353, 709.	1.7	4
60	Cysteine residues in the d-galactose–H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. Biochemical Journal, 2001, 353, 709-717.	1.7	10
61	Subcellular Distribution and Membrane Topology of the Mammalian Concentrative Na+-Nucleoside Cotransporter rCNT1. Journal of Biological Chemistry, 2001, 276, 27981-27988.	1.6	90
62	Comparative analyses of different types of secondary active solute transport proteins. Biochemical Society Transactions, 2000, 28, A90-A90.	1.6	0
63	Overexpression of the bacterial transporter NupC - a model for mammalian active nucleoside transporters. Biochemical Society Transactions, 2000, 28, A93-A93.	1.6	0
64	Construction and overexpression of an affinity-tagged NupG, a bacterial nucleoside transporter from Escherichia coli. Biochemical Society Transactions, 2000, 28, A94-A94.	1.6	0
65	Selective NMR observation of inhibitor and sugar binding to the galactose-H + symport protein GalP, of Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 55-64.	1.4	18
66	The improved synthesis of β-D-glucuronides using TEMPO and t-butyl hypochlorite. Tetrahedron Letters, 1999, 40, 1201-1202.	0.7	36
67	Expression of prokaryotic membrane transport proteins in Eschericia coli - successes and failures. Biochemical Society Transactions, 1999, 27, A140-A140.	1.6	0
68	Expression of isotopically labelled membrane transport proteins. Biochemical Society Transactions, 1999, 27, A150-A150.	1.6	0
69	Overexpresion, purification and structural analysis of the Escherichia colil-fucose-H+ membrane transport protein, FucP. Biochemical Society Transactions, 1999, 27, A150-A150.	1.6	0
70	Weak Substrate Binding to Transport Proteins Studied by NMR. Biophysical Journal, 1998, 75, 2794-2800.	0.2	22
71	Effect of the D32N and N300F mutations on the activity of the bacterial sugar transport protein, GalP. Biochemical Society Transactions, 1998, 26, S306-S306.	1.6	8

Function and Structure of Membrane Transport Proteins. , 1998, , 3-29.

#	Article	IF	CITATIONS
73	Asparagine 394 in Putative Helix 11 of the Galactose-H+ Symport Protein (GalP) from Escherichia coli Is Associated with the Internal Binding Site for Cytochalasin B and Sugar. Journal of Biological Chemistry, 1997, 272, 15189-15199.	1.6	34
74	Purification, reconstitution and circular dichroism of the galactose-H+ transport protein [GalP-(His)6] of Escherichia coli. Biochemical Society Transactions, 1997, 25, 471S-471S.	1.6	5
75	Cation and sugar selectivity determinants in a novel family of transport proteins. Molecular Microbiology, 1996, 19, 911-922.	1.2	174
76	Unidirectional Reconstitution into Detergent-destabilized Liposomes of the Purified Lactose Transport System of. Journal of Biological Chemistry, 1996, 271, 15358-15366.	1.6	109
77	The Role of Tryptophans 371 and 395 in the Binding of Antibiotics and the Transport of Sugars by the D-Galactose-H+ Symport Protein (GalP) from Escherichia coli. Journal of Biological Chemistry, 1995, 270, 30359-30370.	1.6	16
78	Dissection of discrete kinetic events in the binding of antibiotics and substrates to the galactose-H+ symport protein, GalP, ofEscherichia coli. Antonie Van Leeuwenhoek, 1994, 65, 349-358.	0.7	6
79	Identification of a novel sugar-H+symport protein, FucP, for transport of L-fucose into Escherichia coli. Molecular Microbiology, 1994, 12, 799-809.	1.2	45
80	The kinetics and thermodynamics of the binding of cytochalasin B to sugar transporters. FEBS Journal, 1994, 221, 513-522.	0.2	22
81	The variability of kinetic parameters for sugar transport in different mutants of the galactose-H+ symport protein, GalP, of Escherichia coli. Biochemical Society Transactions, 1994, 22, 643-646.	1.6	7
82	The pre-steady-state kinetics of conformational changes in sugar transporters. Biochemical Society Transactions, 1994, 22, 650-654.	1.6	2
83	Mutagenesis of the galactose-H+ symporter, GalP, of Escherichia coli. Biochemical Society Transactions, 1994, 22, 277S-277S.	1.6	1
84	The interaction of forskolin with the galactose-H+ transport protein (GalP) of Escherichia coli. Biochemical Society Transactions, 1994, 22, 278S-278S.	1.6	1
85	Equilibrium and transient kinetic studies of the binding of cytochalasin B to the l-arabinose-H+ symport protein of Escherichia coli. Determination of the sugar binding specificity of the l-arabinose-H+ symporter. FEBS Journal, 1993, 215, 43-54.	0.2	15
86	The 12-transmembrane helix transporters. Current Opinion in Cell Biology, 1993, 5, 708-721.	2.6	170
87	Homologous sugar-transport proteins in microbes and man. Biochemical Society Transactions, 1993, 21, 1002-1006.	1.6	24
88	Sugar—Cation Symport Systems in Bacteria. International Review of Cytology, 1992, 137, 149-208.	6.2	49
89	Nucleoside transporters in human placenta. Biochemical Society Transactions, 1992, 20, 244S-244S.	1.6	5
90	Purification of the galactose/H+ symport protein of Escherichia coli. Biochemical Society Transactions, 1992, 20, 251S-251S.	1.6	1

#	Article	IF	CITATIONS
91	Membrane transport proteins: implications of sequence comparisons. Current Opinion in Cell Biology, 1992, 4, 684-695.	2.6	333
92	Studies of translocation catalysis. Bioscience Reports, 1991, 11, 477-538.	1.1	24
93	Proton-linked sugar transport systems in bacteria. Journal of Bioenergetics and Biomembranes, 1990, 22, 525-569.	1.0	159
94	Detection of proton-linked sugar transport proteins in Enterobacteriaceae. Biochemical Society Transactions, 1989, 17, 441-444.	1.6	6
95	Photoaffinity labelling of the GaIP d-galactose transport protein of Escherichia coli with cytochalasin B. Biochemical Society Transactions, 1989, 17, 552-553.	1.6	6
96	The <scp>d</scp> -xylose binding protein of <i>Escherichia coli</i> . Biochemical Society Transactions, 1989, 17, 553-554.	1.6	8
97	Sugars, antibiotics, microbes and men …. Trends in Genetics, 1987, 3, 62-64.	2.9	11
98	Mammalian and bacterial sugar transport proteins are homologous. Nature, 1987, 325, 641-643.	13.7	417
99	[31] Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli. Methods in Enzymology, 1986, 125, 387-429.	0.4	57
100	Sugar—proton transport systems of <i>Escherichia coli</i> . Biochemical Society Transactions, 1984, 12, 146-148.	1.6	6
101	A Kinetic Analysis of the Effects of Inhibitor-1 and Inhibitor-2 on the Activity of Protein Phosphatase-1. FEBS Journal, 1983, 132, 309-313.	0.2	68
102	Reconstitution of the GalP galactose transport activity of Escherichia coli into liposomes made from soybean phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 1983, 732, 204-209.	1.4	20
103	The isolation and purification of the elvapeptins. FEBS Letters, 1982, 145, 258-262.	1.3	27
104	The inter-relationship between proton-coupled and binding-protein-dependent transport systems in bacteria. Biochemical Society Transactions, 1980, 8, 678-679.	1.6	10
105	Purification and Preliminary Structural Analysis of the Efrapeptins, a Group of Antibiotics that Inhibit the Mitochondrial Adenosine Triphosphatase. Biochemical Society Transactions, 1979, 7, 224-226.	1.6	21
106	The Multiplicity of Components, Energization Mechanisms and Functions involved in Galactose Transport into <i>Escherichia coli</i> . Biochemical Society Transactions, 1977, 5, 25-28.	1.6	4
107	Steady-state enzyme kinetics with high-affinity substrates or inhibitors. A statistical treatment of dose–response curves. Biochemical Journal, 1973, 135, 101-107.	1.7	68
108	A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochemical Journal, 1972, 127, 321-333.	3.2	503

#	Article	IF	CITATIONS
109	Equipping a Research Scale Fermentation Laboratory for Production of Membrane Proteins. , 0, , 37-67.		3