Tan Winie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6791329/publications.pdf Version: 2024-02-01

ΤΑΝ ΜΙΝΙΕ

#	Article	IF	CITATIONS
1	Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. European Polymer Journal, 2007, 43, 1963-1968.	5.4	129
2	Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics, 2008, 14, 491-500.	2.4	81
3	Dielectric behaviour and AC conductivity of LiCF3SO3 doped H-chitosan polymer films. Ionics, 2004, 10, 193-199.	2.4	76
4	Transport properties of hexanoyl chitosan-based gel electrolyte. Ionics, 2006, 12, 149-152.	2.4	60
5	Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Physica B: Condensed Matter, 2009, 404, 4308-4311.	2.7	47
6	FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 677-684.	3.9	43
7	Conductivity and dielectric relaxation of Li salt in poly(ethylene oxide) and epoxidized natural rubber polymer electrolytes. Ionics, 2014, 20, 189-199.	2.4	27
8	lonic conductivity of chitosan membranes and application for electrochemical devices. Polymers for Advanced Technologies, 2006, 17, 523-527.	3.2	25
9	Studies on cellulose acetate-based gel polymer electrolytes for proton batteries. Materials Research Innovations, 2009, 13, 232-234.	2.3	23
10	Electrical properties of PEO–LiCF3SO3–SiO2nanocomposite polymer electrolytes. Materials Research Innovations, 2009, 13, 255-258.	2.3	22
11	Conductivity enhancement by controlled percolation of inorganic salt in multiphase hexanoyl chitosan/polystyrene polymer blends. Frontiers of Materials Science, 2015, 9, 132-140.	2.2	22
12	Mechanical studies on poly(vinyl chloride)–poly(methyl methacrylate)-based polymer electrolytes. Journal of Materials Science, 2010, 45, 1280-1283.	3.7	20
13	Studies on the Structural and Electrical Properties of Hexanoyl Chitosan/Polystyrene-based Polymer Electrolytes. Physics Procedia, 2012, 25, 215-220.	1.2	19
14	Improved long-term stability of dye-sensitized solar cell employing PMA/PVAc based gel polymer electrolyte. Optical Materials, 2019, 96, 109349.	3.6	19
15	Hexanoyl chitosan/ENR25 blend polymer electrolyte system for electrical double layer capacitor. Polymers for Advanced Technologies, 2019, 30, 726-735.	3.2	19
16	Transport studies on filler-doped chitosan based polymer electrolyte. Ionics, 2005, 11, 451-455.	2.4	18
17	Microwave-assisted reduction of graphene oxide for an electrochemical supercapacitor: Structural and capacitance behavior. Materials Chemistry and Physics, 2021, 262, 124274.	4.0	18
18	Influence of 1-methyl-3-propylimidazolium iodide ionic liquid on the performance of dye-sensitized solar cell using hexanoyl chitosan/poly(vinyl chloride) based polymer electrolyte. Optik, 2020, 208, 164558.	2.9	17

#	Article	IF	CITATIONS
19	Synergistic effect of sulfur-doped reduced graphene oxide created via microwave-assisted synthesis for supercapacitor applications. Diamond and Related Materials, 2021, 120, 108696.	3.9	17
20	On the thermodynamics of solid solutions of polymer and salt. Polymer Engineering and Science, 2012, 52, 2277-2284.	3.1	16
21	Thermal, Conductivity and Molecular Interaction Studies of Poly(ethylene oxide)/Poly(methyl) Tj ETQq1 1 0.78	4314 rgBT 0.7	/Overlock 10
22	Solid solutions of hexanoyl chitosan/poly(vinyl chloride) blends and NaI for all-solid-state dye-sensitized solar cells. Ionics, 2019, 25, 3373-3386.	2.4	15
23	Long-run performance of dye-sensitized solar cell using natural dye extracted from Costus woodsonii leaves. Optical Materials, 2022, 123, 111915.	3.6	15
24	Effect of various plasticizers on the transport properties of hexanoyl chitosan-based polymer electrolyte. Journal of Applied Polymer Science, 2006, 101, 4474-4479.	2.6	14
25	Effect of the surface treatment of the TiO2 fillers on the properties of hexanoyl chitosan/polystyrene blend-based composite polymer electrolytes. Ionics, 2014, 20, 347-352.	2.4	14
26	Influence of molar mass on the thermal properties, conductivity and intermolecular interaction of poly(ethylene oxide) solid polymer electrolytes. Polymer International, 2017, 66, 830-838.	3.1	14
27	The synergistic effect of iron cobaltite compare to its single oxides as cathode in supercapacitor. Journal of Electroceramics, 2020, 44, 183-194.	2.0	11
28	Characterization of PMA–TPAI and PVAc–TPAI solid polymer electrolytes and application in dyeâ€sensitized solar cell. Journal of Applied Polymer Science, 2018, 135, 46835.	2.6	10
29	Flexible solid-like electrolytes with ultrahigh conductivity and their applications in all-solid-state supercapacitors. RSC Advances, 2018, 8, 30239-30247.	3.6	10
30	PVdF-HFP Quasi-solid-state Electrolyte for Application in Dye-sensitized Solar Cells. International Journal of Technology, 2018, 9, 1187.	0.8	10
31	Study on factors governing the conductivity performance of acylated chitosan-Nal electrolyte system. Ionics, 2017, 23, 3045-3056.	2.4	9
32	Charge carrier density and mobility of poly(vinyl chloride)-based polymer electrolyte using impedance spectroscopy. Materials Today: Proceedings, 2017, 4, 5130-5137.	1.8	9
33	Effect of ionic liquid concentration on the photovoltaic performance of dye-sensitized solar cell. Materials Today: Proceedings, 2019, 17, 401-407.	1.8	9
34	Thermomechanical Analysis of Isora Nanofibril Incorporated Polyethylene Nanocomposites. Polymers, 2021, 13, 299.	4.5	9
35	Hexanoyl chitosan-based gel electrolyte for use in lithium-ion cell. Polymers for Advanced Technologies, 2006, 17, 552-555.	3.2	8
36	Ac Conductivity and Dielectric Properties of Hexanoyl Chitosan-LiClO ₄ -TiO ₂ Composite Polymer Electrolytes. Advanced Materials Research, 0, 335-336, 873-880.	0.3	8

#	Article	IF	CITATIONS
37	Pentafluoropyridine functionalized novel heteroatom-doped with hierarchical porous 3D cross-linked graphene for supercapacitor applications. RSC Advances, 2021, 11, 26892-26907.	3.6	8
38	Rapid microwave synthesis of molybdenum disulfide-decorated reduced-graphene oxide nanosheets for use in high electrochemical performance supercapacitors. Journal of Energy Storage, 2022, 52, 104991.	8.1	8
39	Selective localization of lithium trifluoromethanesulfonate in the blend of hexanoyl chitosan and polystyrene. High Performance Polymers, 2014, 26, 666-671.	1.8	7
40	Blends of hexanoyl chitosan/epoxidized natural rubber doped with EMImTFSI. Ionics, 2017, 23, 357-366.	2.4	7
41	Dye-sensitized solar cell based on poly(ε-caprolactone) gel polymer electrolyte and cobalt selenide counter electrode. Journal of Polymer Research, 2020, 27, 1.	2.4	7
42	Effect of Anion Size on the Conductivity Behaviour of Hexanoyl Chitosan-Based Polymer Electrolytes. Advanced Materials Research, 0, 545, 317-320.	0.3	6
43	Ionic liquid effect for efficiency improvement in poly(methyl acrylate)/poly(vinyl acetate)-based dye-sensitized solar cells. High Performance Polymers, 2018, 30, 937-948.	1.8	6
44	Electrical Studies On Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes. , 2009, , .		5
45	Stability improvement by incorporating poly(ε-caprolactone) in dimethylformamide-potassium iodide liquid electrolyte for dye-sensitized solar cell. Journal of Solid State Electrochemistry, 2019, 23, 2411-2421.	2.5	5
46	Analyzing FTIR spectra using high sensitivity compare function of FTIR software for 2-pack epoxy paints. AIP Conference Proceedings, 2015, , .	0.4	4
47	Effect of temperature on the transport property of PVdF-HFP-MPII-PC/DME gel polymer electrolytes. AIP Conference Proceedings, 2017, , .	0.4	4
48	PEMA - LiCF3SO3 polymer electrolytes: Assessment of conductivity and transport properties. AIP Conference Proceedings, 2017, , .	0.4	4
49	Characterization of Plasticized Hexanoyl Chitosan-Based Polymer Electrolytes and Application in LiCoO ₂ /MCMB Cells. Materials Science Forum, 2006, 517, 85-88.	0.3	3
50	Characterisation of Al2O3 doped hexanoyl chitosan–LiCF3SO3–EC polymer electrolytes. Materials Research Innovations, 2009, 13, 249-251.	2.3	3
51	Structural and electrical studies of hexanoyl chitosan based electrolyte system. Materials Research Innovations, 2011, 15, s94-s96.	2.3	3
52	Effect of solvent donor number and temperature on the conductivity of liquid electrolyte. Materials Today: Proceedings, 2019, 17, 459-464.	1.8	3
53	Dielectric and AC conductivity behavior of Hexanoyl Chitosan-Nal based polymer electrolytes. International Journal of Advanced and Applied Sciences, 2016, 3, 9-13.	0.4	3
54	Flower-like nanosheets FeCo2O4 for application in supercapacitor and dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2022, 33, 3648-3669.	2.2	3

#	Article	IF	CITATIONS
55	Effects of double solvents/plasticisers on proton conducting gel polymer electrolytes. Materials Research Innovations, 2009, 13, 298-301.	2.3	2
56	Mixed doped lithium nickel vanadate as cathode material by sol–gel and polymer precursor method. Materials Research Innovations, 2011, 15, s86-s91.	2.3	2
57	Ac Conductivity Study of Hexanoyl Chitosan-LiCF ₃ SO ₃ -EC-Al ₂ O ₃ Nanocomposite Polymer Electrolytes. Advanced Materials Research, 2013, 667, 93-98.	0.3	2
58	Effect of Filler Type on the Electrical Properties of Hexanoyl Chitosan-Based Polymer Electrolytes. Advanced Materials Research, 2013, 832, 224-227.	0.3	2
59	Effect of Ethylene Sulphite on the Conductivity and Morphology of PEO-KOH Films. Materials Science Forum, 2006, 517, 89-92.	0.3	1
60	Electrical conductivity of solvent free PEO based polymer electrolytes. Materials Research Innovations, 2009, 13, 272-274.	2.3	1
61	Effect of Amino Acid (L-Leucine) on the Conductivity of PVAâ^•CHITOSAN-LiCF[sub 3]SO[sub 3]. , 2009, , .		1
62	Preparation and characterization of Li <inf>1.4</inf> Al <inf>0.4</inf> Ti <inf>1.6</inf> (PO <inf>4</inf>) <inf>3</inf> conducting electrolyte. , 2012, , .		1
63	Structural and Electrical Characterization of Hexanoyl Chitosan-LiClO ₄ -TiO ₂ -DMC Polymer Electrolytes. Key Engineering Materials, 0, 594-595, 608-612.	0.4	1
64	Hexanoyl Chitosan-Polystyrene Blend Based Composite Polymer Electrolyte with Surface Treated TiO ₂ Fillers. Key Engineering Materials, 2013, 594-595, 656-660.	0.4	1
65	FTIR and Electrical Studies of Hexanoyl Chitosan-Based Nanocomposite Polymer Electrolytes. Advanced Materials Research, 0, 1043, 36-39.	0.3	1
66	Studies on the effect of acid treated TiO2 on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF3SO3 composite polymer electrolytes. AIP Conference Proceedings, 2015, , .	0.4	1
67	Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes. AIP Conference Proceedings, 2015, , .	0.4	1
68	Transport properties of hexanoyl chitosan-LiClO4-TiO2 composite polymer electrolyte. AIP Conference Proceedings, 2015, , .	0.4	1
69	Characterisation of Polymer Electrolytes Based on High Molecular Weight PVC and BMIMCF ₃ SO ₃ . Key Engineering Materials, 2016, 705, 150-154.	0.4	1
70	Effect of Temperature on Conductivity Performance of PEO-Nal Based Polymer Electrolytes. Advanced Materials Research, 0, 1142, 128-133.	0.3	1
71	The Influence of Temperature on Conductivity and Dielectric Properties of PMA/PVAc Blend with Addition of TPAI Salt. Materials Science Forum, 0, 889, 201-206.	0.3	1
72	Study on miscibility of poly(methyl acrylate) and poly(vinyl acetate) by viscometric, thermal and structural analyses. Materials Today: Proceedings, 2017, 4, 5100-5107.	1.8	1

#	Article	IF	CITATIONS
73	Conductivity Studies On Plasticized Peo-Lithium Triflate Electrolyte System. , 2009, , .		Ο
74	ICFMD-2008. Materials Research Innovations, 2009, 13, 133-133.	2.3	0
75	The Effect Of Filler Size On Electrical Properties Of PEO-Based Polymer Electrolyte. , 2009, , .		0
76	Effect of H ₂ SO ₄ Treated TiO ₂ Nano Fillers on the AC Conductivity of Hexanoyl Chitosan-Polystyrene-LiCF ₃ SO ₃ Polymer Electrolytes. Advanced Materials Research, 2013, 832, 228-232.	0.3	0
77	Miscibility study of hexanoyl chitosan in blend with epoxidized natural rubber by viscometric analysis. AIP Conference Proceedings, 2015, , .	0.4	0
78	Special proceedings of the International Symposium on Materials and Assets Integrity (ISMAI 2016) "Advancements and Innovations in Materials and Asset Integrity Analysis and Management―during 10th International Materials Technology Conference & Exhibition (IMTCEÂ2016), Kuala Lumpur, Malaysia, 16–18 May 2016. Ionics, 2017, 23, 253-255.	2.4	0
79	Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid. AIP Conference Proceedings, 2017, , .	0.4	Ο
80	Development of pma/pvac-tpai-bmii solid polymer electrolytes for application in dye sensitized solar cell. E3S Web of Conferences, 2018, 67, 03032.	0.5	0
81	Comparative study of nickel selenide, iron selenide and platinum on triiodide reduction for dye-sensitized solar cells. Optical Materials: X, 2021, 13, 100119.	0.8	0