Eleanore T Wurtzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6791246/publications.pdf

Version: 2024-02-01

56 papers

4,730 citations

147801 31 h-index 55 g-index

58 all docs 58 docs citations

58 times ranked 4025 citing authors

#	Article	IF	Citations
1	Analysis of plant-derived carotenoids in camouflaging stick and leaf insects (Phasmatodea). Methods in Enzymology, 2022, , 499-524.	1.0	1
2	Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in <i>Citrus</i> . Plant Physiology, 2021, 187, 829-845.	4.8	29
3	Building the Synthetic Biology Toolbox with Enzyme Variants to Expand Opportunities for Biofortification of Provitamin A and Other Health-Promoting Carotenoids. Journal of Agricultural and Food Chemistry, 2020, 68, 12048-12057.	5.2	11
4	Elucidating Carotenoid Biosynthetic Enzyme Localization and Interactions Using Fluorescent Microscopy. Methods in Molecular Biology, 2020, 2083, 223-234.	0.9	4
5	Improved Expression and Purification of the Carotenoid Biosynthetic Enzyme Z-ISO. Methods in Molecular Biology, 2020, 2083, 53-61.	0.9	4
6	Focus Issue Editorial: Synthetic Biology. Plant Physiology, 2019, 179, 772-774.	4.8	4
7	Revolutionizing agriculture with synthetic biology. Nature Plants, 2019, 5, 1207-1210.	9.3	100
8	Changing Form and Function through Carotenoids and Synthetic Biology. Plant Physiology, 2019, 179, 830-843.	4.8	101
9	Plant metabolism, the diverse chemistry set of the future. Science, 2016, 353, 1232-1236.	12.6	180
10	Control of carotenoid biosynthesis through a heme-based cis-trans isomerase. Nature Chemical Biology, 2015, 11, 598-605.	8.0	72
11	The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content. BMC Plant Biology, 2015, 15, 185.	3.6	65
12	Mechanistic Aspects of Carotenoid Biosynthesis. Chemical Reviews, 2014, 114, 164-193.	47.7	243
13	The carotenoid biosynthetic pathway: Thinking in all dimensions. Plant Science, 2013, 208, 58-63.	3.6	147
14	Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1888-97.	7.1	26
15	Synergistic Interactions between Carotene Ring Hydroxylases Drive Lutein Formation in Plant Carotenoid Biosynthesis Â. Plant Physiology, 2012, 160, 204-214.	4.8	84
16	Maize Provitamin A Carotenoids, Current Resources, and Future Metabolic Engineering Challenges. Frontiers in Plant Science, 2012, 3, 29.	3.6	97
17	Plastid Localization of the Key Carotenoid Enzyme Phytoene Synthase Is Altered by Isozyme, Allelic Variation, and Activity. Plant Cell, 2012, 24, 3725-3741.	6.6	136
18	The MORPH Algorithm: Ranking Candidate Genes for Membership in <i>Arabidopsis</i> and Tomato Pathways. Plant Cell, 2012, 24, 4389-4406.	6.6	23

#	Article	IF	Citations
19	Coupled Transcript-Metabolite Profiling: Towards Systems Biology Approaches to Unravel Regulation of Seed Secondary Metabolism., 2012,, 367-385.		1
20	A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Systems Biology, 2011, 5, 77.	3.0	128
21	Isolation and Characterization of the <i>Z-ISO</i> Gene Encoding a Missing Component of Carotenoid Biosynthesis in Plants Â. Plant Physiology, 2010, 153, 66-79.	4.8	203
22	From epoxycarotenoids to ABA: The role of ABA 8′-hydroxylases in drought-stressed maize roots. Archives of Biochemistry and Biophysics, 2010, 504, 112-117.	3.0	29
23	The carotenoid dioxygenase gene family in maize, sorghum, and rice. Archives of Biochemistry and Biophysics, 2010, 504, 104-111.	3.0	127
24	Guest editors' introduction. Archives of Biochemistry and Biophysics, 2010, 504, 1-2.	3.0	1
25	Timing and Biosynthetic Potential for Carotenoid Accumulation in Genetically Diverse Germplasm of Maize Â. Plant Physiology, 2009, 150, 562-572.	4.8	139
26	Metabolite Sorting of a Germplasm Collection Reveals the <i>Hydroxylase3</i> Locus as a New Target for Maize Provitamin A Biofortification \hat{A} \hat{A} \hat{A} . Plant Physiology, 2009, 151, 1635-1645.	4.8	111
27	The phytoene synthase gene family in the Grasses. Plant Signaling and Behavior, 2009, 4, 208-211.	2.4	61
28	The Maize Phytoene Synthase Gene Family: Overlapping Roles for Carotenogenesis in Endosperm, Photomorphogenesis, and Thermal Stress Tolerance Á Â. Plant Physiology, 2008, 147, 1334-1346.	4.8	224
29	Natural Genetic Variation in <i>Lycopene Epsilon Cyclase</i> Tapped for Maize Biofortification. Science, 2008, 319, 330-333.	12.6	692
30	<i>PSY3</i> , a New Member of the Phytoene Synthase Gene Family Conserved in the Poaceae and Regulator of Abiotic Stress-Induced Root Carotenogenesis Â. Plant Physiology, 2008, 146, 1333-1345.	4.8	233
31	Maize Y9 Encodes a Product Essential for 15-cis-ζ-Carotene Isomerization. Plant Physiology, 2007, 144, 1181-1189.	4.8	155
32	Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases. Archives of Biochemistry and Biophysics, 2007, 458, 146-157.	3.0	59
33	Maize cDNAs Expressed in Endosperm Encode Functional Farnesyl Diphosphate Synthase with Geranylgeranyl Diphosphate Synthase Activity. Plant Physiology, 2006, 141, 220-231.	4.8	44
34	Gene Duplication in the Carotenoid Biosynthetic Pathway Preceded Evolution of the Grasses. Plant Physiology, 2004, 135, 1776-1783.	4.8	150
35	QTL and candidate genes phytoene synthase and $\hat{I}\P$ -carotene desaturase associated with the accumulation of carotenoids in maize. Theoretical and Applied Genetics, 2004, 108, 349-359.	3.6	176
36	Chapter five Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. Recent Advances in Phytochemistry, 2004, 38, 85-110.	0.5	32

#	Article	IF	CITATIONS
37	Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation. Applied Microbiology and Biotechnology, 2003, 60, 713-719.	3.6	28
38	Maize phytoene desaturase and Â-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. Journal of Experimental Botany, 2003, 54, 2215-2230.	4.8	130
39	A simple approach to identify the first rice mutants blocked in carotenoid biosynthesis. Journal of Experimental Botany, 2001, 52, 161-166.	4.8	1
40	A simple approach to identify the first rice mutants blocked in carotenoid biosynthesis. Journal of Experimental Botany, 2001, 52, 161-166.	4.8	15
41	Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Applied Microbiology and Biotechnology, 2000, 53, 396-400.	3.6	197
42	The ltk gene family encodes novel receptor-like kinases with temporal expression in developing maize endosperm., 1998, 37, 749-761.		21
43	Theviviparous12maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. Journal of Experimental Botany, 1997, 48, 1259-1268.	4.8	31
44	Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Molecular Biology, 1996, 30, 269-279.	3.9	94
45	COLINEARITY OF CHLOROPLAST GENOMES IN DIVERGENT ECOTYPES OF THE MARINE DIATOM SKELETONEMA COSTATUM (BACILLARIOPHYTA)1. Journal of Phycology, 1995, 31, 795-800.	2.3	5
46	Use of a Ds Chromosome-Breaking Element to Examine Maize Vp5 Expression. Journal of Heredity, 1992, 83, 109-113.	2.4	11
47	COMPARISON OF CHLOROPLAST DNA AND ALLOZYME VARIATION IN WINTER STRAINS OF THE MARINE DIATOM SKELETONEMA COSTATUM(BACILLARIOPHYTA)1. Journal of Phycology, 1992, 28, 90-94.	2.3	18
48	A Phylogenetic Analysis of American Zamiaceae (Cycadales) Using Chloroplast DNA Restriction Fragment Length Polymorphisms. Brittonia, 1991, 43, 135.	0.2	36
49	Characterization of an Immunoglobulin Binding Protein Homolog in the Maize floury-2 Endosperm Mutant. Plant Cell, 1991, 3, 483.	6.6	30
50	Molecular analysis of intraspecific variation in the marine diatom Skeletonema costatum. Biochemical Systematics and Ecology, 1990, 18, 5-9.	1.3	17
51	DNase I hypersensitivity and expression of the Shrunken-1 gene of maize. Plant Molecular Biology, 1987, 8, 251-264.	3.9	26
52	Cloning of the regulatory genes (ompR and envZ) for the matrix proteins of the Escherichia coli outer membrane. Journal of Bacteriology, 1982, 150, 1462-1466.	2.2	61
53	Restriction enzyme cleavage sites surrounding the structural gene for the lipoprotein of the Escherichia coli outer membrane. Journal of Bacteriology, 1979, 138, 715-720.	2.2	24
54	Gene dosage effects of the structural gene for a lipoprotein of the Escherichia coli outer membrane. Journal of Bacteriology, 1978, 133, 81-84.	2.2	35

#	Article	IF	CITATIONS
55	Lipoprotein from Proteus mirabilis. Journal of Bacteriology, 1978, 134, 674-676.	2.2	12
56	Localizing and Quantifying Carotenoids in Intact Cells and Tissues. , 0, , .		3