
Saeid Amini-Nik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6791058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging Impairs the Cellular Interplay between Myeloid Cells and Mesenchymal Cells during Skin Healing in Mice. , 2022, 13, 540.		4
2	Biological characteristics of stem cells derived from burned skin—a comparative study with umbilical cord stem cells. Stem Cell Research and Therapy, 2021, 12, 137.	2.4	4
3	Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Research and Therapy, 2020, 11, 18.	2.4	23
4	Increased proliferation of hepatic periportal ductal progenitor cells contributes to persistent hypermetabolism after trauma. Journal of Cellular and Molecular Medicine, 2020, 24, 1578-1587.	1.6	1
5	Electrospun Polyurethane–Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomaterials Science and Engineering, 2020, 6, 505-516.	2.6	47
6	Catecholamines Induce Endoplasmic Reticulum Stress Via Both Alpha and Beta Receptors. Shock, 2020, 53, 476-484.	1.0	11
7	Re: Examining the contribution of surrounding intact skin during cutaneous healing. Journal of Anatomy, 2020, 236, 379-380.	0.9	1
8	Stem Cell Therapy in Wound Care. Updates in Clinical Dermatology, 2020, , 129-137.	0.1	0
9	Promotion of dermal regeneration using pullulan/gelatin porous skin substitute. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1965-1977.	1.3	15
10	Examining the contribution of surrounding intact skin during cutaneous healing. Journal of Anatomy, 2019, 234, 523-531.	0.9	4
11	Genome-wide comparisons of gene expression in adult versus elderly burn patients. PLoS ONE, 2019, 14, e0226425.	1.1	5
12	Emerging Innovative Wound Dressings. Annals of Biomedical Engineering, 2019, 47, 659-675.	1.3	93
13	Handheld skin printer: <i>in situ</i> formation of planar biomaterials and tissues. Lab on A Chip, 2018, 18, 1440-1451.	3.1	175
14	Biomaterials for Skin Substitutes. Advanced Healthcare Materials, 2018, 7, 1700897.	3.9	138
15	Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Advanced Drug Delivery Reviews, 2018, 123, 135-154.	6.6	83
16	Stem cells derived from burned skin - The future of burn care. EBioMedicine, 2018, 37, 509-520.	2.7	43
17	5-HT1A Receptor Function Makes Wound Healing a Happier Process. Frontiers in Pharmacology, 2018, 9, 1406.	1.6	16
18	Accumulation of myeloid lineage cells is mapping out liver fibrosis post injury: a targetable lesion using Ketanserin. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	7

SAEID AMINI-NIK

#	Article	IF	CITATIONS
19	The Role of Serotonin during Skin Healing in Post-Thermal Injury. International Journal of Molecular Sciences, 2018, 19, 1034.	1.8	41
20	Time Heals all Wounds- but Scars Remain. Can Personalized Medicine Help?. Frontiers in Genetics, 2018, 9, 211.	1.1	6
21	Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. Stem Cell Research and Therapy, 2018, 9, 193.	2.4	59
22	Hepatic steatosis associated with decreased β-oxidation and mitochondrial function contributes to cell damage in obese mice after thermal injury. Cell Death and Disease, 2018, 9, 530.	2.7	21
23	Overall perspective on the clinical importance of skin models. , 2018, , 39-54.		4
24	A Surgical Device to Study the Efficacy of Bioengineered Skin Substitutes in Mice Wound Healing Models. Tissue Engineering - Part C: Methods, 2017, 23, 237-242.	1.1	17
25	The critical role of macrophages in the pathogenesis of hidradenitis suppurativa. Inflammation Research, 2017, 66, 931-945.	1.6	51
26	Acellular Gelatinous Material of Human Umbilical Cord Enhances Wound Healing: A Candidate Remedy for Deficient Wound Healing. Frontiers in Physiology, 2017, 8, 200.	1.3	25
27	The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. International Journal of Molecular Sciences, 2017, 18, 1068.	1.8	93
28	The response of muscle progenitor cells to cutaneous thermal injury. Stem Cell Research and Therapy, 2017, 8, 234.	2.4	10
29	The Role of Myeloid Lineage Cells on Skin Healing and Skin Regeneration. Journal of Tissue Science & Engineering, 2017, 08, .	0.2	6
30	De-liver CLiPs and revitalize hepatocytes. Stem Cell Investigation, 2017, 4, 30-30.	1.3	1
31	Use of Stem Cells in Acute and Complex Wounds. Stem Cells in Clinical Applications, 2017, , 195-226.	0.4	2
32	Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin. Stem Cells International, 2016, 2016, 1-9.	1.2	28
33	Stem cell therapies for wounds. , 2016, , 177-200.		2
34	What's New in Shock? March 2016. Shock, 2016, 45, 239-240.	1.0	0
35	Methodologies in creating skin substitutes. Cellular and Molecular Life Sciences, 2016, 73, 3453-3472.	2.4	88
36	Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration. Tissue Engineering - Part A, 2016, 22, 754-764.	1.6	57

SAEID AMINI-NIK

#	Article	IF	CITATIONS
37	Threshold age and burn size associated with poor outcomes in the elderly after burn injury. Burns, 2016, 42, 276-281.	1.1	77
38	Alternative Mechanism for White Adipose Tissue Lipolysis after Thermal Injury. Molecular Medicine, 2015, 21, 959-968.	1.9	17
39	Pathophysiologic Response to Burns in the Elderly. EBioMedicine, 2015, 2, 1536-1548.	2.7	110
40	Burn Induces Browning of the Subcutaneous White Adipose Tissue in Mice and Humans. Cell Reports, 2015, 13, 1538-1544.	2.9	151
41	Effect of Human Wharton's Jelly Mesenchymal Stem Cell Paracrine Signaling on Keloid Fibroblasts. Stem Cells Translational Medicine, 2014, 3, 299-307.	1.6	52
42	Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Research and Therapy, 2014, 5, 28.	2.4	136
43	Burn Plus Lipopolysaccharide Augments Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation and Reduces PGC-11± in Liver. Shock, 2014, 41, 138-144.	1.0	44
44	Animal models in burn research. Cellular and Molecular Life Sciences, 2014, 71, 3241-3255.	2.4	317
45	β-Catenin–regulated myeloid cell adhesion and migration determine wound healing. Journal of Clinical Investigation, 2014, 124, 2599-2610.	3.9	108
46	Cutaneous wound healing: recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences, 2013, 70, 2059-2081.	2.4	358
47	What's New in Shock? December 2013. Shock, 2013, 40, 441-443.	1.0	0
48	Familial Adenomatous Polyposis-Associated Desmoids Display Significantly More Genetic Changes than Sporadic Desmoids. PLoS ONE, 2011, 6, e24354.	1.1	24
49	Fibronectin and β-Catenin Act in a Regulatory Loop in Dermal Fibroblasts to Modulate Cutaneous Healing. Journal of Biological Chemistry, 2011, 286, 27687-27697.	1.6	57
50	Pax7 Expressing Cells Contribute to Dermal Wound Repair, Regulating Scar Size through a β-Catenin Mediated Process. Stem Cells, 2011, 29, 1371-1379.	1.4	44
51	Correction: Aggressive Fibromatosis (Desmoid Tumor) Is Derived from Mesenchymal Progenitor Cells. Cancer Research, 2011, 71, 6084-6084.	0.4	1
52	The Picosecond IR Laser (PIRL) Scalpel: Fundamental Limits to Minimally Invasive Surgery and Biodiagnostics. , 2011, , .		0
53	Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery. PLoS ONE, 2010, 5, e13053.	1.1	165
54	Aggressive Fibromatosis (Desmoid Tumor) Is Derived from Mesenchymal Progenitor Cells. Cancer Research, 2010, 70, 7690-7698.	0.4	110

SAEID AMINI-NIK

#	Article	IF	CITATIONS
55	β-catenin and transforming growth factor β have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction. BMC Cell Biology, 2009, 10, 38.	3.0	41
56	Therapeutic Potential of Replication-Selective Oncolytic Adenoviruses on Cells from Familial and Sporadic Desmoid Tumors. Clinical Cancer Research, 2008, 14, 6187-6192.	3.2	4
57	Upregulation of Wilms' tumour gene 1 (WT1) in uterine sarcomas. European Journal of Cancer, 2007, 43, 1630-1637.	1.3	44
58	TGF-β modulates β-Catenin stability and signaling in mesenchymal proliferations. Experimental Cell Research, 2007, 313, 2887-2895.	1.2	61
59	Upregulation of Wilms' tumor gene 1 (WT1) in desmoid tumors. International Journal of Cancer, 2005, 114, 202-208.	2.3	39
60	Identification of IGFBP-6 as a significantly downregulated gene by β-catenin in desmoid tumors. Oncogene, 2004, 23, 654-664.	2.6	47
61	Blood pressure pattern in urban and rural areas in Isfahan, Iran. Journal of Human Hypertension, 1997, 11, 425-428.	1.0	28