
Yaqing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6790823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF–PI3K pathway. ELife, 2022, 11, .	2.8	29
2	Extrinsic KRAS Signaling Shapes the Pancreatic Microenvironment Through Fibroblast Reprogramming. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1673-1699.	2.3	36
3	The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 349-369.	2.3	25
4	Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Science Alliance, 2021, 4, e202000935.	1.3	64
5	Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB–Mediated Production of CXCL1. Cancer Research, 2021, 81, 4305-4318.	0.4	80
6	Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 682217.	1.3	13
7	Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 2023-2037.	3.2	156
8	Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discovery, 2020, 10, 422-439.	7.7	223
9	Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice. Gastroenterology, 2020, 158, 1417-1432.e11.	0.6	48
10	Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 581-599.	2.3	62
11	Discoidin Domain Receptor 1 (DDR1) Is Necessary for Tissue Homeostasis in Pancreatic Injury and Pathogenesis of Pancreatic Ductal Adenocarcinoma. American Journal of Pathology, 2020, 190, 1735-1751.	1.9	27
12	Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metabolism, 2019, 29, 1390-1399.e6.	7.2	280
13	Epithelial-Stromal Interactions in Pancreatic Cancer. Annual Review of Physiology, 2019, 81, 211-233.	5.6	33
14	Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut, 2017, 66, 124-136.	6.1	269
15	Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances theÂAnti-Tumor Activity of PD-1 Blockade inÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 1740-1748.	0.3	107
16	Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 99-118.	2.3	48
17	Epithelial-Myeloid cell crosstalk regulates acinar cell plasticity and pancreatic remodeling in mice. ELife, 2017, 6, .	2.8	40
18	Early pancreatic islet fate and maturation is controlled through RBP-Jκ. Scientific Reports, 2016, 6, 26874.	1.6	9

YAQING ZHANG

#	Article	IF	CITATIONS
19	Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways. Oncotarget, 2016, 7, 10255-10270.	0.8	25
20	Dosage-Dependent Regulation of Pancreatic Cancer Growth and Angiogenesis by Hedgehog Signaling. Cell Reports, 2014, 9, 484-494.	2.9	85
21	Immune cells in pancreatic cancer. OncoImmunology, 2014, 3, e29125.	2.1	5
22	CD4+ T Lymphocyte Ablation Prevents Pancreatic Carcinogenesis in Mice. Cancer Immunology Research, 2014, 2, 423-435.	1.6	92
23	Interleukin-6 Is Required for Pancreatic Cancer Progression by Promoting MAPK Signaling Activation and Oxidative Stress Resistance. Cancer Research, 2013, 73, 6359-6374.	0.4	208
24	Metastatic Pancreatic Cancer Is Dependent on Oncogenic Kras in Mice. PLoS ONE, 2012, 7, e49707.	1.1	146
25	Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 2012, 122, 639-653.	3.9	613
26	Metabolic requirement for GOT2 in pancreatic cancer depends on environmental context. ELife, 0, 11, .	2.8	32