Jéssica Fernanda Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6790792/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology, 2017, 80, 492-500.	2.5	236
2	Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chemistry, 2019, 287, 197-204.	4.2	68
3	Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months. Food Chemistry, 2018, 242, 427-434.	4.2	67
4	Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chemistry, 2017, 219, 260-267.	4.2	62
5	Optimized Camellia sinensis var. sinensis, llex paraguariensis, and Aspalathus linearis blend presents high antioxidant and antiproliferative activities in a beverage model. Food Chemistry, 2018, 254, 348-358.	4.2	58
6	Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 2022, 123, 172-186.	7.8	52
7	Butia spp. (Arecaceae): An overview. Scientia Horticulturae, 2014, 179, 122-131.	1.7	49
8	Probiotic butiá (Butia odorata) ice cream: Development, characterization, stability of bioactive compounds, and viability ofÂBifidobacterium lactis during storage. LWT - Food Science and Technology, 2017, 75, 379-385.	2.5	48
9	<i>Butia</i> spp. (Arecaceae) LC-MS-Based Metabolomics for Species and Geographical Origin Discrimination. Journal of Agricultural and Food Chemistry, 2017, 65, 523-532.	2.4	46
10	Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry, 2017, 237, 638-644.	4.2	38
11	Bioactive and yield potential of jelly palms (Butia odorata Barb. Rodr.). Food Chemistry, 2015, 172, 699-704.	4.2	34
12	Effects of moisture and temperature during grain storage on the functional properties and isoflavone profile of soy protein concentrate. Food Chemistry, 2018, 242, 37-44.	4.2	32
13	Quality of black beans as a function of long-term storage and moldy development: Chemical and functional properties of flour and isolated protein. Food Chemistry, 2018, 246, 473-480.	4.2	31
14	Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chemistry, 2021, 339, 127810.	4.2	31
15	Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111020.	2.5	29
16	Untargeted Metabolomic Analysis of <i>Capsicum</i> spp. by GC–MS. Phytochemical Analysis, 2017, 28, 439-447.	1.2	28
17	Changes in Phenolic Acid and Isoflavone Contents during Soybean Drying and Storage. Journal of Agricultural and Food Chemistry, 2019, 67, 1146-1155.	2.4	25
18	Hydrothermal treatment of maize: Changes in physical, chemical, and functional properties. Food Chemistry, 2018, 263, 225-231.	4.2	21

2

#	Article	IF	CITATIONS
19	Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics. Food Chemistry, 2019, 288, 297-305.	4.2	20
20	Characterization of Extra Virgin Olive Oil from Southern Brazil. European Journal of Lipid Science and Technology, 2020, 122, 1900347.	1.0	20
21	Wheat leaf resistance to <i>Pyrenophora triticiâ€repentis</i> induced by silicon activation of phenylpropanoid metabolism. Plant Pathology, 2018, 67, 1713-1724.	1.2	19
22	Chemical and cytotoxic analyses of brown Brazilian propolis (ApisÂmellifera) and its inÂvitro activity against itraconazole-resistant Sporothrix brasiliensis. Microbial Pathogenesis, 2017, 105, 117-121.	1.3	18
23	Extraction and characterization of phytochemical compounds from araçazeiro (Psidium cattleianum) leaf: Putative antioxidant and antimicrobial properties. Food Research International, 2020, 137, 109573.	2.9	18
24	Chemical composition and cytotoxicity of extracts of marjoram and rosemary and their activity against Sporothrix brasiliensis. Journal of Medical Microbiology, 2017, 66, 1076-1083.	0.7	13
25	Liquid Chromatography with mass spectrometry analysis of mycotoxins in food samples using silica hydride based stationary phases. Journal of Separation Science, 2017, 40, 1953-1959.	1.3	12
26	Polar Origanum vulgare (Lamiaceae) extracts with antifungal potential against Sporothrix brasiliensis. Medical Mycology, 2018, 56, 225-233.	0.3	11
27	Volatile compounds profile of Brazilian aromatic brown rice genotypes and its cooking quality characteristics. Cereal Chemistry, 2019, 96, 292-301.	1.1	10
28	Effects of Organic and Conventional Cropping Systems on Technological Properties and Phenolic Compounds of Freshly Harvested and Stored Rice. Journal of Food Science, 2017, 82, 2276-2285.	1.5	9
29	Flavan-3-ol, flavanone, flavone, flavonol, phenolic acid, and stilbene contents of four Butia species (Arecaceae). Fruits, 2018, 73, 125-137.	0.3	9
30	Olive oil: a review on the identity and quality of olive oils produced in Brazil. Revista Brasileira De Fruticultura, 2021, 43, .	0.2	7
31	Effects of storage period and temperature on the technological properties, starch digestibility, and phenolic compounds of mung beans (Vigna radiata L.). Journal of Stored Products Research, 2020, 89, 101694.	1.2	6
32	Red rice drying and storage: Effects on technological properties and phenolic compounds of the raw and cooked grains. Journal of Cereal Science, 2022, 103, 103405.	1.8	6
33	Estimate of genetic parameters in bioactive and micronutrients compounds of maize. African Journal of Agricultural Research Vol Pp, 2016, 11, 3123-3133.	0.2	5
34	Isoflavone profile and protein molecular weight distribution of soy protein concentrates after soaking treatments. Journal of Food Processing and Preservation, 2019, 43, e13906.	0.9	5
35	Jabuticaba [<i>Plinia peruviana</i> (Poir.) Govaerts]: a Brazilian fruit with a promising application against itraconazole-susceptible and -resistant <i>Sporothrix brasiliensis</i> . Natural Product Research, 2021, 35, 5988-5992.	1.0	3
36	Effects of the intensification of soybean defects: Degradation metabolism of carbohydrates, organic acids, proteins, lipids, and phenolics. Journal of Food Processing and Preservation, 2021, 45, e15516.	0.9	3

#	Article	IF	CITATIONS
37	First Report of Fruit Rot Caused by <i>Diaporthe masirevicii</i> on <i>Physalis peruviana</i> in Brazil. Plant Disease, 2018, 102, 441-441.	0.7	3
38	Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains. Journal of Agricultural and Food Chemistry, 2017, 65, 6771-6778.	2.4	2
39	Hypolipidemic and anti-inflammatory properties of phenolic richButia odoratafruit extract: potential involvement of paraoxonase activity. Biomarkers, 2020, 25, 417-424.	0.9	2
40	Antiviral and virucidal potential of Origanum vulgare Linn. (oregano) extracts against Bovine alphaherpesvirus 1 (BoHV-1). Research, Society and Development, 2021, 10, e28410514979.	0.0	1
41	Pensar na educação profissional á distância a partir do olhar do egresso do curso técnico em AgroindustrÃa. Momento - Diálogos Em Educação, 2019, 28, 312-327.	0.1	0
42	Avaliação de extratos vegetais em formulações farmacêuticas no tratamento da otite externa canina. Medicina Veterinaria (Brazil), 2021, 15, 332-339.	0.1	0
43	Efeito do método de preparo sobre as caracterÃsticas fÃsico-quÃmicas e sensoriais do café. , 0, , 1-8.		0