Nils Erland L Haugen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6790571/publications.pdf

Version: 2024-02-01

63 papers 1,965 citations

304743

22

h-index

254184 43 g-index

64 all docs

64
docs citations

64 times ranked 1444 citing authors

#	Article	IF	CITATIONS
1	Simulations of nonhelical hydromagnetic turbulence. Physical Review E, 2004, 70, 016308.	2.1	261
2	Evolving turbulence and magnetic fields in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2006, 366, 1437-1454.	4.4	217
3	Is Nonhelical Hydromagnetic Turbulence Peaked at Small Scales?. Astrophysical Journal, 2003, 597, L141-L144.	4.5	110
4	The Onset of a Small-Scale Turbulent Dynamo at Low Magnetic Prandtl Numbers. Astrophysical Journal, 2005, 625, L115-L118.	4.5	106
5	The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained. Journal of Open Source Software, 2021, 6, 2807.	4.6	92
6	Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers. Journal of Fluid Mechanics, 2010, 661, 239-261.	3.4	91
7	Numerical models for thermochemical degradation of thermally thick woody biomass, and their application in domestic wood heating appliances and grate furnaces. Progress in Energy and Combustion Science, 2017, 63, 204-252.	31.2	85
8	Mach number dependence of the onset of dynamo action. Monthly Notices of the Royal Astronomical Society, 2004, 353, 947-952.	4.4	79
9	Inertial range scaling in numerical turbulence with hyperviscosity. Physical Review E, 2004, 70, 026405.	2.1	72
10	A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions. International Journal of Heat and Mass Transfer, 2016, 92, 708-717.	4.8	54
11	CFD modeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler. Energy, 2017, 140, 1305-1315.	8.8	52
12	The conversion mode of a porous carbon particle during oxidation and gasification. Combustion and Flame, 2014, 161, 612-619.	5.2	40
13	Suppression of small scale dynamo action by an imposed magnetic field. Physical Review E, 2004, 70, 036408.	2.1	34
14	The effect of Stefan flow on the drag coefficient of spherical particles in a gas flow. International Journal of Multiphase Flow, 2019, 117, 130-137.	3.4	34
15	Chemical Looping Combustion of Methane Using a Copper-based Oxygen Carrier in a 150 kW Reactor System. Energy Procedia, 2017, 114, 352-360.	1.8	32
16	Hydrodynamic and hydromagnetic energy spectra from large eddy simulations. Physics of Fluids, 2006, 18, 075106.	4.0	30
17	Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions. International Journal of Hydrogen Energy, 2011, 36, 12025-12034.	7.1	30
18	A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions Part-II: Complex geometries. International Journal of Heat and Mass Transfer, 2017, 104, 98-111.	4.8	29

#	Article	IF	CITATIONS
19	Numerical Simulations of Staged Biomass Grate Fired Combustion with an Emphasis on NOx Emissions. Energy Procedia, 2015, 75, 156-161.	1.8	27
20	A comprehensive model for char particle conversion in environments containing O2 and CO2. Combustion and Flame, 2015, 162, 1455-1463.	5. 2	27
21	Correlation effects between turbulence and the conversion rate of pulverized char particles. Combustion and Flame, 2017, 185, 160-172.	5.2	23
22	The effect of turbulent clustering on particle reactivity. Proceedings of the Combustion Institute, 2017, 36, 2333-2340.	3.9	23
23	Eulerian and L agrangian approaches to multidimensional condensation and collection. Journal of Advances in Modeling Earth Systems, 2017, 9, 1116-1137.	3 . 8	22
24	Drag force for a burning particle. Combustion and Flame, 2020, 217, 188-199.	5. 2	22
25	Fully resolved simulations of single char particle combustion using a ghostâ€cell immersed boundary method. AICHE Journal, 2018, 64, 2851-2863.	3.6	19
26	Detection of turbulent thermal diffusion of particles in numerical simulations. Physics of Fluids, 2012, 24, .	4.0	18
27	NOX formation in oxy-fuel combustion of lignite in a bubbling fluidized bed – Modelling and experimental verification. International Journal of Greenhouse Gas Control, 2018, 76, 208-214.	4.6	18
28	The effect of Stefan flow on Nusselt number and drag coefficient of spherical particles in non-isothermal gas flow. International Journal of Multiphase Flow, 2021, 140, 103650.	3.4	18
29	The effect of turbulence on mass transfer rates of small inertial particles with surface reactions. Journal of Fluid Mechanics, 2018, 836, 932-951.	3.4	17
30	Drying of Thermally Thick Wood Particles: A Study of the Numerical Efficiency, Accuracy, and Stability of Common Drying Models. Energy & Samp; Fuels, 2017, 31, 13743-13760.	5.1	15
31	Varying the forcing scale in low Prandtl number dynamos. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2827-2833.	4.4	15
32	Combustion of Thermally Thick Wood Particles: A Study on the Influence of Wood Particle Size on the Combustion Behavior. Energy & Samp; Fuels, 2018, 32, 6847-6862.	5.1	15
33	Cloud-droplet growth due to supersaturation fluctuations in stratiform clouds. Atmospheric Chemistry and Physics, 2019, 19, 639-648.	4.9	15
34	The effect of turbulence on mass transfer rates between inertial polydisperse particles and fluid. Journal of Fluid Mechanics, 2019, 874, 1147-1168.	3.4	14
35	The problem of small and large scale fields in the solar dynamo. Astronomische Nachrichten, 2005, 326, 174-185.	1.2	13
36	Turbophoresis in forced inhomogeneous turbulence. European Physical Journal Plus, 2018, 133, 1.	2.6	13

#	Article	IF	CITATIONS
37	Visualization system for the measurement of size and sphericity of char particles under combustion conditions. Powder Technology, 2016, 301, 141-152.	4.2	12
38	Coupling constants and the generalized Riemann problem for isothermal junction flow. Journal of Hyperbolic Differential Equations, 2015, 12, 37-59.	0.5	11
39	Comprehensive Char Particle Gasification Model Adequate for Entrained-Flow and Fluidized-Bed Gasifiers. Energy & Samp; Fuels, 2017, 31, 2164-2174.	5.1	11
40	Kinetic parameters of petroleum coke gasification for modelling chemical-looping combustion systems. Energy, 2021, 232, 120935.	8.8	11
41	Numerical approaches for thermochemical conversion of char. Progress in Energy and Combustion Science, 2022, 91, 100993.	31.2	11
42	A method for retrieving char oxidation kinetic data from reacting particle trajectories in a novel test facility. Fuel, 2018, 212, 240-255.	6.4	10
43	Inertial particle impaction on a cylinder in turbulent cross-flow at modest Reynolds numbers. International Journal of Multiphase Flow, 2019, 111, 53-61.	3.4	10
44	MSWI super heater tube bundle: Particle impaction efficiency and size distribution. Fuel Processing Technology, 2013, 106, 416-422.	7.2	9
45	Design of the experimental rig for retrieving kinetic data of char particles. Fuel Processing Technology, 2017, 156, 178-184.	7.2	9
46	Predicting NOx Emissions from Wood Stoves using Detailed Chemistry and Computational Fluid Dynamics. Energy Procedia, 2015, 75, 1740-1745.	1.8	8
47	Oxy-fuel burner investigations for CO2 capture in cement plants. Energy Procedia, 2017, 120, 120-125.	1.8	8
48	Multipoint radiation induced ignition of dust explosions: turbulent clustering of particles and increased transparency. Combustion Theory and Modelling, 2018, 22, 1084-1102.	1.9	8
49	Spectral characterisation of inertial particle clustering in turbulence. Journal of Fluid Mechanics, 2022, 934, .	3.4	8
50	An experimental study of the reactivity of cellulosic-based chars from wastes. Fuel, 2014, 130, 306-314.	6.4	7
51	Numerical investigation of free-stream turbulence effects on the transition-in-wake state of flow past a circular cylinder. Journal of Turbulence, 2018, 19, 252-273.	1.4	7
52	The effect of turbulence on mass transfer in solid fuel combustion: RANS model. Combustion and Flame, 2021, 227, 65-78.	5.2	7
53	Hydrogen fuel supply system and re-heat gas turbine combustion. Energy Procedia, 2012, 23, 151-160.	1.8	6
54	Modeling radiation in particle clouds: on the importance of inter-particle radiation for pulverized solid fuel combustion. Heat and Mass Transfer, 2015, 51, 991-999.	2.1	5

#	Article	IF	Citations
55	Nonlinear simulations of combustion instabilities with a quasi-1D Navier–Stokes code. Journal of Sound and Vibration, 2011, 330, 5644-5659.	3.9	4
56	Influence of long pulse duration on time-resolved laser-induced incandescence. Applied Physics B: Lasers and Optics, 2013, 112, 359-367.	2.2	4
57	Simulating Thermal Wood Particle Conversion: Ash-Layer Modeling and Parametric Studies. Energy & Energ	5.1	4
58	The origin and evolution of cluster magnetism. Astronomische Nachrichten, 2006, 327, 583-586.	1.2	3
59	Numerical Study of Hydrogen Inhibition of Char Gasification Using Detailed Hetero- and Homogeneous Chemical Kinetics. Energy & Energy & 2016, 30, 4411-4418.	5.1	3
60	Thermophoresis and its effect on particle impaction on a cylinder for low and moderate Reynolds numbers. International Journal of Heat and Mass Transfer, 2021, 181, 121996.	4.8	2
61	A numerical study on the combustion of a resolved carbon particle. Combustion and Flame, 2022, 238, 111880.	5. 2	2
62	A Two-Dimensional Study on the Effect of Anisotropy on the Devolatilization of a Large Wood Log. Energies, 2019, 12, 4430.	3.1	1
63	Bed Model for Grate-Fired Furnaces: Computational Fluid Dynamics Modeling and Comparison to Experiments. Energy & Experiments.	5.1	1