
Efthimios Kyriakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6790110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutagenesis of a Lotus japonicus GSK3β/Shaggy-like kinase reveals functionally conserved regulatory residues. Phytochemistry, 2021, 186, 112707.	1.4	4
2	Glycogen phosphorylase revisited: extending the resolution of the R- and T-state structures of the free enzyme and in complex with allosteric activators. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 303-311.	0.4	5
3	Structure activity relationship of the binding of p-coumaroyl glucose to glycogen phosphorylase and its effect on hepatic cell metabolic pathways. European Journal of Medicinal Chemistry Reports, 2021, 3, 100011.	0.6	2
4	The architecture of hydrogen and sulfur Ï <i>f</i> -hole interactions explain differences in the inhibitory potency of C-β-d-glucopyranosyl thiazoles, imidazoles and an N-β-d glucopyranosyl tetrazole for human liver glycogen phosphorylase and offer new insights to structure-based design. Bioorganic and Medicinal Chemistry, 2020, 28, 115196.	1.4	5
5	Synthetic flavonoid derivatives targeting the glycogen phosphorylase inhibitor site: QM/MM-PBSA motivated synthesis of substituted 5,7-dihydroxyflavones, crystallography, in vitro kinetics and ex-vivo cellular experiments reveal novel potent inhibitors. Bioorganic Chemistry, 2020, 102, 104003.	2.0	13
6	Glucopyranosylidene-spiro-imidazolinones, a New Ring System: Synthesis and Evaluation as Glycogen Phosphorylase Inhibitors by Enzyme Kinetics and X-ray Crystallography. Journal of Medicinal Chemistry, 2019, 62, 6116-6136.	2.9	14
7	High Consistency of Structure-Based Design and X-Ray Crystallography: Design, Synthesis, Kinetic Evaluation and Crystallographic Binding Mode Determination of Biphenyl-N-acyl-Î ² -d-Clucopyranosylamines as Glycogen Phosphorylase Inhibitors. Molecules, 2019, 24, 1322.	1.7	8
8	A multidisciplinary study of 3-(β- d -glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors. European Journal of Medicinal Chemistry, 2018, 147, 266-278.	2.6	22
9	Probing the β-pocket of the active site of human liver glycogen phosphorylase with 3-(C-β-d-glucopyranosyl)-5-(4-substituted-phenyl)-1, 2, 4-triazole inhibitors. Bioorganic Chemistry, 2018, 77, 485-493.	2.0	18
10	Affinity Crystallography Reveals the Bioactive Compounds of Industrial Juicing Byproducts of Punica granatum for Glycogen Phosphorylase. Current Drug Discovery Technologies, 2018, 15, 41-53.	0.6	4
11	van der Waals interactions govern C-β-d-glucopyranosyl triazoles' nM inhibitory potency in human liver glycogen phosphorylase. Journal of Structural Biology, 2017, 199, 57-67.	1.3	15
12	Nanomolar Inhibitors of Glycogen Phosphorylase Based on β- <scp>d</scp> -Glucosaminyl Heterocycles: A Combined Synthetic, Enzyme Kinetic, and Protein Crystallography Study. Journal of Medicinal Chemistry, 2017, 60, 9251-9262.	2.9	18
13	Phytogenic Polyphenols as Glycogen Phosphorylase Inhibitors: The Potential of Triterpenes and Flavonoids for Glycaemic Control in Type 2 Diabetes. Current Medicinal Chemistry, 2017, 24, 384-403.	1.2	30
14	Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b. FEBS Letters, 2015, 589, 1787-1794.	1.3	31
15	Biochemical and biological assessment of the inhibitory potency of extracts from vinification byproducts of Vitis vinifera extracts against glycogen phosphorylase. Food and Chemical Toxicology, 2014, 67, 35-43.	1.8	35