
Eamonn Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6789879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 2017, 174, S272-S359.	5.4	597
2	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G proteinâ€coupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	5.4	557
3	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
4	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
5	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
6	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
7	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
8	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
9	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
10	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
11	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
12	μ-Opioid Receptors: Correlation of Agonist Efficacy for Signalling with Ability to Activate Internalization. Molecular Pharmacology, 2010, 78, 756-766.	2.3	236
13	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
14	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. British Journal of Pharmacology, 2017, 174, S360-S446.	5.4	193
15	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
16	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
17	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
18	Morphineâ€induced respiratory depression is independent of βâ€arrestin2 signalling. British Journal of Pharmacology, 2020, 177, 2923-2931.	5.4	182

EAMONN KELLY

#	Article	IF	CITATIONS
19	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltageâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S160-S194.	5.4	178
20	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 2017, 174, S225-S271.	5.4	177
21	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
22	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
23	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
24	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
25	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
26	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligandâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S130-S159.	5.4	144
27	The novel μâ€opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception. British Journal of Pharmacology, 2018, 175, 2653-2661.	5.4	142
28	Agonist-Selective Mechanisms of μ-Opioid Receptor Desensitization in Human Embryonic Kidney 293 Cells. Molecular Pharmacology, 2006, 70, 676-685.	2.3	140
29	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133
30	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	5.4	131
31	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
32	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
33	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
34	Fentanyl depression of respiration: Comparison with heroin and morphine. British Journal of Pharmacology, 2020, 177, 254-265.	5.4	102
35	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
36	Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends in Pharmacological Sciences, 2020, 41, 947-959.	8.7	91

EAMONN KELLY

#	Article	IF	CITATIONS
37	Endomorphin-2: A Biased Agonist at the μ-Opioid Receptor. Molecular Pharmacology, 2012, 82, 178-188.	2.3	88
38	Protein Kinase C Activation Enhances Morphine-Induced Rapid Desensitization of μ-Opioid Receptors in Mature Rat Locus Ceruleus Neurons. Molecular Pharmacology, 2004, 66, 1592-1598.	2.3	83
39	Role of G Protein–Coupled Receptor Kinases 2 and 3 in <i>μ</i> -Opioid Receptor Desensitization and Internalization. Molecular Pharmacology, 2015, 88, 347-356.	2.3	81
40	A Biased View of <i>μ</i> -Opioid Receptors?. Molecular Pharmacology, 2019, 96, 542-549.	2.3	81
41	Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. Journal of Neurochemistry, 2001, 78, 546-551.	3.9	78
42	Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor. Blood, 2016, 128, 2717-2728.	1.4	72
43	Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine. Neuropsychopharmacology, 2016, 41, 762-773.	5.4	61
44	Segregation of discrete G _{sα} â€mediated responses that accompany homologous or heterologous desensitization in two related somatic hybrids. British Journal of Pharmacology, 1990, 99, 309-316.	5.4	55
45	The effect of inhibitors of receptor internalization on the desensitization and resensitization of three Gs-coupled receptor responses. British Journal of Pharmacology, 1998, 125, 1594-1600.	5.4	46
46	Oxycodoneâ€induced tolerance to respiratory depression: reversal by ethanol, pregabalin and protein kinase C inhibition. British Journal of Pharmacology, 2018, 175, 2492-2503.	5.4	44
47	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. British Journal of Pharmacology, 2017, 174, S195-S207.	5.4	41
48	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40
49	A Novel G Protein–Biased Agonist at the <i>δ</i> Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 224-236.	2.5	38
50	The anomalous pharmacology of fentanyl. British Journal of Pharmacology, 2023, 180, 797-812.	5.4	38
51	Enhanced expression of G protein-coupled receptor kinase 2 selectively increases the sensitivity of A2A adenosine receptors to agonist-induced desensitization. British Journal of Pharmacology, 1998, 125, 347-356.	5.4	34
52	How the complex pharmacology of the fentanyls contributes to their lethality. Addiction, 2019, 114, 1524-1525.	3.3	32
53	A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22353-22358.	7.1	31
54	Drug Binding Poses Relate Structure with Efficacy in the μ Opioid Receptor. Journal of Molecular Biology, 2017, 429, 1840-1851.	4.2	26

EAMONN KELLY

#	Article	IF	CITATIONS
55	μâ€Opioid receptor desensitization: homologous or heterologous?. European Journal of Neuroscience, 2012, 36, 3636-3642.	2.6	22
56	The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours. Psychopharmacology, 2015, 232, 305-314.	3.1	20
57	Ligand bias at the \hat{l} ¹ /4-opioid receptor. Biochemical Society Transactions, 2013, 41, 218-224.	3.4	18
58	NaF and guanine nucleotides modulate adenylate cyclase activity in NG108â€15 cells by interacting with both G _s and G _i . British Journal of Pharmacology, 1990, 100, 223-230.	5.4	17
59	Methadone: does it really have low efficacy at μ-opioid receptors?. NeuroReport, 2008, 19, 589-593.	1.2	17
60	Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and c-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 51-59.	2.5	16
61	Chronic Ethanol Reduces Immunologically Detectable Gq?/11?in NG108?15 Cells. Journal of Neurochemistry, 1993, 61, 1163-1166.	3.9	15
62	The subtleties of µ-opioid receptor phosphorylation. British Journal of Pharmacology, 2011, 164, 294-297.	5.4	11
63	Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. Advances in Drug and Alcohol Research, 0, 2, .	2.5	8
64	A novel G proteinâ€biased agonist at the μ opioid receptor induces substantial receptor desensitisation through G proteinâ€coupled receptor kinase. British Journal of Pharmacology, 2020, , .	5.4	7
65	G-protein-coupled receptor dephosphorylation at the cell surface. British Journal of Pharmacology, 2006, 147, 235-236.	5.4	6
66	Prolonged ethanol administration prevents the development of tolerance to morphine-induced respiratory depression. Drug and Alcohol Dependence, 2019, 205, 107674.	3.2	2
67	Emerging areas of opioid pharmacology. British Journal of Pharmacology, 2018, 175, 2715-2716.	5.4	1
68	The ability of fentanyls and other opioids to increase EMG amplitude in respiratory muscles correlates with their agonist efficacy. FASEB Journal, 2021, 35, .	0.5	1