List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6789378/publications.pdf Version: 2024-02-01

		394421	361022
121	1,555	19	35
papers	citations	h-index	g-index
121	121	121	619
all docs	docs citations	times ranked	citing authors

SHIDING FENC

#	Article	IF	CITATIONS
1	Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Physical Review B, 2018, 97, .	3.2	141
2	Kinetic energy driven superconductivity in doped cuprates. Physical Review B, 2003, 68, .	3.2	99
3	A gauge invariant dressed holon and spinon description of the normal state of underdoped cuprates. Journal of Physics Condensed Matter, 2004, 16, 343-359.	1.8	99
4	Fermion-spin transformation to implement the charge-spin separation. Physical Review B, 1994, 49, 2368-2384.	3.2	90
5	Doping dependence of antiferromagnetism inLa2CuO4: A numerical study based on a resonating-valence-bond state. Physical Review B, 1988, 38, 11809-11812.	3.2	79
6	Magnetic nature of superconductivity in doped cuprates. Physica C: Superconductivity and Its Applications, 2006, 436, 14-24.	1.2	77
7	Kinetic-energy-driven superconductivity in cuprate superconductors. International Journal of Modern Physics B, 2015, 29, 1530009.	2.0	47
8	Electronic structure of kinetic energy driven superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 382-390.	2.1	39
9	ELECTRONIC STRUCTURE OF KINETIC ENERGY DRIVEN CUPRATE SUPERCONDUCTORS. International Journal of Modern Physics B, 2008, 22, 3757-3811.	2.0	37
10	Fractional topological phase in one-dimensional flat bands with nontrivial topology. Physical Review B, 2012, 86, .	3.2	37
11	Slave-particle studies of the electron-momentum distribution in the low-dimensionalt-Jmodel. Physical Review B, 1993, 47, 15192-15200.	3.2	34
12	GAUGE INVARIANT DRESSED HOLON AND SPINON IN DOPED CUPRATES. Modern Physics Letters B, 2003, 17, 361-373.	1.9	33
13	Two gaps with one energy scale in cuprate superconductors. Physical Review B, 2012, 85, .	3.2	33
14	Quantum spin Hall effect induced by nonmagnetic and magnetic staggered potentials. Physical Review B, 2011, 83, .	3.2	30
15	Resonating-valence-bond wave function for the two-dimensional Heisenberg model on a triangular lattice. Physical Review B, 1990, 41, 11110-11113.	3.2	27
16	Electronic structure of cuprate superconductors in a full charge-spin recombination scheme. Physica C: Superconductivity and Its Applications, 2015, 517, 5-15.	1.2	26
17	Charge dynamics of copper oxide materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 232, 293-298.	2.1	25
18	Generating ring dark solitons in an evolving Bose-Einstein condensate. Physical Review A, 2007, 76, .	2.5	20

#	Article	IF	CITATIONS
19	Charge order driven by Fermi-arc instability and its connection with pseudogap in cuprate superconductors. Philosophical Magazine, 2016, 96, 1245-1262.	1.6	20
20	A NEW FERMION-SPIN TRANSFORMATION TO IMPLEMENT THE CHARGE-SPIN SEPARATION. Modern Physics Letters B, 1993, 07, 1013-1019.	1.9	19
21	Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates. Physical Review B, 2001, 64, .	3.2	18
22	Electronic structure of kinetic energy driven superconductors in the presence of bilayer splitting. Physical Review B, 2007, 76, .	3.2	18
23	Quantum phase transitions of interacting bosons on hyperbolic lattices. Journal of Physics Condensed Matter, 2021, 33, 335602.	1.8	18
24	Enhancement of superconducting transition temperature by the additional second neighbor hopping in the model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 138-146.	2.1	17
25	Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors. Physica C: Superconductivity and Its Applications, 2017, 534, 1-8.	1.2	14
26	Superconducting pairing symmetry in the kagome-lattice Hubbard model. Physical Review B, 2022, 105, .	3.2	14
27	Universal spin response in copper oxide materials. Physical Review B, 1998, 57, 10328-10331.	3.2	13
28	Doping dependence of Meissner effect in cuprate superconductors. Physica C: Superconductivity and Its Applications, 2010, 470, 1968-1976.	1.2	13
29	Magnetic-field-induced reduction of the low-temperature superfluid density in cuprate superconductors. Physical Review B, 2011, 83, .	3.2	13
30	Electron doping evolution of structural and antiferromagnetic phase transitions inNaFe1â^²xCoxAsiron pnictides. Physical Review B, 2016, 94, .	3.2	13
31	Doping dependence of charge order in electron-doped cuprate superconductors. Philosophical Magazine, 2017, 97, 3361-3380.	1.6	13
32	Asymmetry of the electron spectrum in hole-doped and electron-doped cuprates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 473-480.	2.1	12
33	Doping and energy dependent microwave conductivity of kinetic energy driven superconductors with extended impurities. Physica C: Superconductivity and Its Applications, 2008, 468, 1078-1084.	1.2	12
34	Doping and energy evolution of spin dynamics in the electron-doped cuprate superconductorPr0.88LaCe0.12CuO4â~ĩſ. Physical Review B, 2008, 77, .	3.2	12
35	Interplay between charge order and superconductivity in cuprate superconductors. Physica C: Superconductivity and Its Applications, 2018, 551, 72-81.	1.2	12
36	Autocorrelation of quasiparticle spectral intensities and its connection with quasiparticle scattering interference in cuprate superconductors. Philosophical Magazine, 2019, 99, 752-769.	1.6	12

#	Article	IF	CITATIONS
37	Solitons and vortices in an evolving Bose-Einstein condensate. Physical Review A, 2008, 77, .	2.5	11
38	Publisher's Note: Two gaps with one energy scale in cuprate superconductors [Phys. Rev. B85, 054509 (2012)]. Physical Review B, 2012, 85, .	3.2	11
39	INTERPLAY BETWEEN SINGLE PARTICLE COHERENCE AND KINETIC ENERGY DRIVEN SUPERCONDUCTIVITY IN DOPED CUPRATES. Modern Physics Letters B, 2004, 18, 895-907.	1.9	9
40	Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates. Physical Review B, 2007, 75, .	3.2	9
41	Bosonic edge states in gapped honeycomb lattices. Physical Review B, 2016, 93, .	3.2	9
42	Anomalous Electron Spectrum and Its Relation to Peak Structure of Electron Scattering Rate in Cuprate Superconductors. Journal of Low Temperature Physics, 2018, 192, 19-32.	1.4	9
43	Out-of-plane impurities induce deviations from the monotonicd-wave superconducting gap of cuprate superconductors. Physical Review B, 2009, 80, .	3.2	8
44	Anisotropic microwave conductivity of cuprate superconductors in the presence of CuO chain-induced impurities. Physical Review B, 2009, 80, .	3.2	8
45	Momentum dependence of quasiparticle spectrum and Bogoliubov angle in cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 632-636.	2.1	8
46	Doping dependence of thermodynamic properties in cuprate superconductors. Physica C: Superconductivity and Its Applications, 2012, 478, 49-55.	1.2	8
47	Quantum Monte Carlo study of honeycomb antiferromagnets under a triaxial strain. Physical Review B, 2021, 104, .	3.2	8
48	Magnon Landau levels in the strained antiferromagnetic honeycomb nanoribbons. Physical Review Research, 2021, 3, .	3.6	8
49	ESTIMATION OF THE DOPING DEPENDENCE OF ANTIFERROMAGNETISM IN THE COPPER OXIDE MATERIAL. Modern Physics Letters B, 1996, 10, 1301-1309.	1.9	7
50	Optical and transport properties in a doped two-leg ladder antiferromagnet. Physical Review B, 2002, 65, .	3.2	7
51	Enhancement of commensurate magnetic resonance energy by the additional second neighbor hopping in cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 438-445.	2.1	7
52	Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach. Physica C: Superconductivity and Its Applications, 2010, 470, 407-414.	1.2	7
53	Doping and temperature dependence of electronic Raman response in cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 375, 214-219.	2.1	7
54	Peak structure in the self-energy of cuprate superconductors. Physical Review B, 2021, 103, .	3.2	7

#	Article	IF	CITATIONS
55	Quantum Monte Carlo study of topological phases on a spin analogue of Benalcazar–Bernevig–Hughes model. Journal of Physics Condensed Matter, 2022, 34, 035603.	1.8	7
56	Electronic structure of the electron-doped cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 137-144.	2.1	6
57	Dynamical spin response in cuprate superconductors from low-energy to high-energy. Journal of Magnetism and Magnetic Materials, 2015, 374, 624-633.	2.3	6
58	Pseudogap-induced anisotropic suppression of electronic Raman response in cuprate superconductors. Philosophical Magazine Letters, 2017, 97, 206-215.	1.2	6
59	Correlation Between Charge Order and Second-Neighbor Hopping in Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2018, 31, 683-687.	1.8	6
60	Doublon-holon excitations split by Hund's rule coupling within the orbital-selective Mott phase. Physical Review B, 2019, 100, .	3.2	6
61	Spin-Liquid State for Two-Dimensional Heisenberg Antiferromagnets on a Triangular Lattice. Modern Physics Letters B, 1998, 12, 677-683.	1.9	5
62	Energy dependence of commensurate neutron scattering peak in the doped two-leg ladder antiferromagnetSr14â^xCaxCu24O41. Physical Review B, 2003, 67, .	3.2	5
63	SUPERCONDUCTIVITY IN NaxCoO2·yH2O DRIVEN BY THE KINETIC ENERGY. International Journal of Modern Physics B, 2005, 19, 73-75.	2.0	5
64	Superconductivity in doped two-leg ladder cuprates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 358, 448-456.	2.1	5
65	Extinction of quasiparticle scattering interference in cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3084-3091.	2.1	5
66	Electronic Raman response in electron-doped cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3329-3334.	2.1	5
67	Interplay between superconductivity and pseudogap state in bilayer cuprate superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2210-2215.	2.1	5
68	Pseudogap and charge dynamics in doped cuprates. Physica C: Superconductivity and Its Applications, 2014, 497, 77-83.	1.2	5
69	Hidden Pair-Density-Wave Order in Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2745-2749.	1.8	5
70	Pressure dependence of superconductivity in doped two-leg ladder cuprates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 611-614.	2.1	4
71	Why there is a difference between optimal doping for maximal and critical doping for highest in cuprate superconductors?. Solid State Communications, 2013, 165, 55-58.	1.9	4
72	Doping Dependence of Meissner Effect in Triangular-Lattice Superconductors. Journal of Low Temperature Physics, 2015, 181, 112-133.	1.4	4

#	Article	IF	CITATIONS
73	ARPES Autocorrelation in Electron-Doped Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2305-2311.	1.8	4
74	Renormalization of electrons in bilayer cuprate superconductors. Physica C: Superconductivity and Its Applications, 2020, 576, 1353661.	1.2	4
75	Anisotropic dressing of electrons in electron-doped cuprate superconductors. Physical Review B, 2021, 103, .	3.2	4
76	Thermal conductivity in the doped two-leg ladder antiferromagnet Sr14â^'xCaxCu24O41. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 335, 477-485.	2.1	3
77	Pseudogap and its connection to particle–hole asymmetry electronic state and Fermi arcs in cuprate superconductors. Physica C: Superconductivity and Its Applications, 2012, 483, 225-232.	1.2	3
78	Effect of the pseudogap on the infrared response in cuprate superconductors. Philosophical Magazine Letters, 2014, 94, 387-394.	1.2	3
79	Charge Order and Peak-dip-hump Structure in Pseudogap Phase of Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2016, 29, 3027-3030.	1.8	3
80	Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5. Frontiers of Physics, 2016, 11, 1.	5.0	3
81	Doping and momentum dependence of coupling strength in cuprate superconductors. Philosophical Magazine, 2019, 99, 2718-2735.	1.6	3
82	Quantum magnetism of topologically-designed graphene nanoribbons. Journal of Physics Condensed Matter, 2019, 31, 505601.	1.8	3
83	Doping Dependence of Electromagnetic Response in Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2020, 33, 69-79.	1.8	3
84	Antiferromagnetic transitions of Dirac fermions in three dimensions. Physical Review B, 2020, 102, .	3.2	3
85	Enhancement of superconductivity by electronic nematicity in cuprate superconductors. Philosophical Magazine, 2022, 102, 918-962.	1.6	3
86	Characteristic energy of the nematic-order state and its connection to enhancement of superconductivity in cuprate superconductors. Physical Review B, 2021, 104, .	3.2	3
87	Unconventional ferromagnetism and spin-triplet superconductivity in the imbalanced kagome-lattice Hubbard model. Physical Review B, 2022, 105, .	3.2	3
88	Spin dynamics in the pressure-induced two-leg ladder cuprate superconductor Sr _{14â^²<i>x</i>} Ca _{<i>x</i>} Cu ₂₄ O ₄₁ . Journal of Physics Condensed Matter, 2011, 23, 345701.	1.8	2
89	Pseudogap-induced asymmetric tunneling in cuprate superconductors. Physica C: Superconductivity and Its Applications, 2014, 501, 62-67.	1.2	2
90	Electron-momentum distribution of cuprate superconductors in a full charge-spin recombination scheme. Modern Physics Letters B, 2015, 29, 1550178.	1.9	2

#	Article	IF	CITATIONS
91	Thermodynamic Properties in Triangular-Lattice Superconductors. Journal of Low Temperature Physics, 2016, 183, 329-341.	1.4	2
92	Evolution of electron Fermi surface with doping in cobaltates. Journal of Physics Condensed Matter, 2016, 28, 335601.	1.8	2
93	Correlation between charge-order state and next nearest-neighbor hopping in electron-doped cuprate superconductors. International Journal of Modern Physics B, 2018, 32, 1840027.	2.0	2
94	Anomalous electron quasiparticle excitation spectrum in electron-doped cuprate superconductors. Modern Physics Letters B, 2020, 34, 2040053.	1.9	2
95	Self-organized bosonic domain walls. Physical Review Research, 2020, 2, .	3.6	2
96	CHARGE TRANSPORT IN ELECTRON-DOPED CUPRATES. International Journal of Modern Physics B, 2005, 19, 59-61.	2.0	1
97	HEAT TRANSPORT IN HOLE-DOPED TWO-LEG LADDER ANTIFERROMAGNET. International Journal of Modern Physics B, 2005, 19, 111-114.	2.0	1
98	UNUSUAL c-AXIS CHARGE DYNAMICS IN UNDERDOPED CUPRATES. International Journal of Modern Physics B, 2005, 19, 95-98.	2.0	1
99	DOPING AND TEMPERATURE DEPENDENCE OF SUPERFLUID DENSITY IN KINETIC ENERGY DRIVEN CUPRATE SUPERCONDUCTORS. Modern Physics Letters B, 2010, 24, 2845-2854.	1.9	1
100	THERMODYNAMICAL PROPERTIES OF A TRAPPED INTERACTING BOSE GAS. Modern Physics Letters B, 2012, 26, 1250053.	1.9	1
101	Magnetic Field Dependence of Penetration Depth in Kinetic Energy Driven Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1235-1238.	1.8	1
102	Charge dynamics in doped Mott insulators on a honeycomb lattice. Modern Physics Letters B, 2016, 30, 1650107.	1.9	1
103	Momentum and Doping Dependence of Spin Excitations in Electron-Doped Cuprate Superconductors. Journal of Low Temperature Physics, 2017, 187, 273-286.	1.4	1
104	Asymmetric doping dependence of superconductivity between hole- and electron-doped triangular-lattice superconductors. Modern Physics Letters B, 2018, 32, 1850122.	1.9	1
105	Hard-core bosonic domain walls on a honeycomb lattice. Physical Review A, 2020, 101, .	2.5	1
106	Supersolid phase induced by artificial gauge fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 185302.	1.5	1
107	Doping dependence of thermopower in cuprate superconductors. Modern Physics Letters B, 2021, 35, 2150034.	1.9	1
108	Revealing sign-reversal s+â^' -wave pairing by quasiparticle interference in the heavy-fermion superconductor CeCu2Si2. Physical Review B, 2022, 105, .	3.2	1

#	Article	IF	CITATIONS
109	UNUSUAL c-AXIS CHARGE TRANSPORT IN THE ELECTRON DOPED COBALTATE. International Journal of Modern Physics B, 2005, 19, 69-72.	2.0	0
110	QUASIPARTICLE SPECTRAL WEIGHT OF KINETIC ENERGY DRIVEN D-WAVE SUPERCONDUCTORS. International Journal of Modern Physics B, 2007, 21, 3108-3111.	2.0	0
111	Evolution of spin dynamics in electron-doped cuprate superconductors. Journal of Physics and Chemistry of Solids, 2008, 69, 3139-3141.	4.0	0
112	Effect of the External Magnetic Field on the Resonance Scattering in Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2009, 22, 41-44.	1.8	0
113	Electronic structure of the out-of-plane impurity-controlled cuprate superconductors. Physica C: Superconductivity and Its Applications, 2010, 470, S255-S256.	1.2	0
114	Quasiparticle scattering interference in kinetic energy driven superconductors. Physica C: Superconductivity and Its Applications, 2010, 470, S253-S254.	1.2	0
115	Anisotropy in Microwave Conductivity of the Ortho-II YBa2Cu3O6.50 Induced by CuO Chain Impurities. Journal of Superconductivity and Novel Magnetism, 2010, 23, 675-677.	1.8	0
116	Doping Dependence of Magnetic Field Penetration Depth inÂKinetic Energy Driven Cuprate Superconductors. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1161-1163.	1.8	0
117	Doping dependence of electromagnetic response in electron-doped cuprate superconductors. Physica C: Superconductivity and Its Applications, 2013, 485, 132-136.	1.2	0
118	ELECTRONIC RAMAN SCATTERING IN CUPRATE SUPERCONDUCTORS. Modern Physics Letters B, 2013, 27, 1330006.	1.9	0
119	High-energy magnetic excitations in cuprate superconductors. International Journal of Modern Physics B, 2015, 29, 1542001.	2.0	0
120	Nature of charge order in cuprate superconductors. International Journal of Modern Physics B, 2016, 30, 1642005.	2.0	0
121	Renormalization of Dispersion in Electron-Doped Bilayer Cuprate Superconductors. Journal of Low Temperature Physics, 0, , 1.	1.4	0