Andreas Sundermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6789046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe. Journal of Chemical Physics, 2001, 114, 3408-3420.	3.0	1,277
2	Computational Study of a New Heck Reaction Mechanism Catalyzed by Palladium(II/IV) Species. Chemistry - A European Journal, 2001, 7, 1703-1711.	3.3	160
3	Selective Câ^'C vs Câ^'H Bond Activation by Rhodium(I) PCP Pincer Complexes. A Computational Study. Journal of the American Chemical Society, 2000, 122, 7095-7104.	13.7	85
4	Isoelectronic Arduengo-Type Carbene Analogues with the Group IIIa Elements Boron, Aluminum, Gallium, and Indium. European Journal of Inorganic Chemistry, 1998, 1998, 305-310.	2.0	67
5	Thermochemical analysis of core correlation and scalar relativistic effects on molecular atomization energies. Journal of Chemical Physics, 2000, 113, 1348-1358.	3.0	45
6	Exclusive Câ^'C Activation in the Rhodium(I) PCN Pincer Complex. A Computational Study. Organometallics, 2001, 20, 1783-1791.	2.3	34
7	Bonding Properties of Amidinate Complexes of the Group 14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent and Tetravalent Oxidation States. Inorganic Chemistry, 1999, 38, 29-37.	4.0	24
8	Do Divalent [{HC(CR′NR′′)2}E] Compounds Contain E(I) or E(III) (E = B, Al, Ga, In)? On the Corresponden of Formal Oxidation Numbers, Lewis Structures, and Reactivity. European Journal of Inorganic Chemistry, 2002, 2002, 1854-1863.	ce 2.0	24
9	Catalytic decomposition of N2O on supported Rh catalysts. Catalysis Today, 2020, 355, 608-619.	4.4	24
10	A study of some unusual hydrides: BeH2, BeH+6 and SH6. Molecular Physics, 1999, 96, 711-718.	1.7	21
11	Catalytic Reduction of Acetone by [(bpy)Rh]+:Â A Theoretical Mechanistic Investigation and Insight into Cooperativity Effects in This System. Journal of the American Chemical Society, 2003, 125, 11430-11441.	13.7	19
12	Parallel Synthesis and Testing of Catalysts for the Polymerization of Ethylene. Macromolecular Rapid Communications, 2004, 25, 280-285.	3.9	18
13	(NH)-Phosphanylamido- and (PH)-Phosphoraneiminato Transition-Metal Complexes:  Syntheses, Structures, and Computational Studies. Organometallics, 2001, 20, 1770-1775.	2.3	17
14	Geometric and Electronic Structure of Carbocene, (C5R5)2C, versus Silicocene, (C5R5)2Si (R = H, Me). Organometallics, 1999, 18, 2099-2106.	2.3	16
15	Synthesis, Structural Characterization and Reactivity of the (Ferriomethyl)silanols C5R5(OC)2Feâ^'CH2â^'SiMe(R′)OH (R = H, Me; R′ = Me, Ph). European Journal of Inorganic Chemistry, 2002 2002, 3242-3252.	, 2.0	15
16	High-Throughput Screening as a Supplemental Tool for the Development of Advanced Emission Control Catalysts: Methodological Approaches and Data Processing. Catalysts, 2016, 6, 23.	3.5	14
17	Ring Structure Formation in Transition-Metal Nitrido Chlorides by Donorâ^ Acceptor Formation. Inorganic Chemistry, 1998, 37, 3034-3039.	4.0	13
18	Electronic Structure of Metallacyclophosphazene and Metallacyclothiazene Complexes. Inorganic Chemistry, 1999, 38, 6261-6270.	4.0	12

#	ARTICLE	IF	CITATIONS
19	Phosphoraneâ^'Iminato Complexes of Transition Metals with Heterocubane Structure:Â A Computational Study. Journal of the American Chemical Society, 2000, 122, 4729-4734.	13.7	12
20	Exploring structure activity relationships in the acetoxylation of small olefins. Catalysis Today, 2006, 117, 304-310.	4.4	11
21	Requirements and Solution Approaches for Software Architectures Supporting High-Throughput Experimentation. QSAR and Combinatorial Science, 2005, 24, 66-77.	1.4	10
22	Mastering the Challenges of Catalyst Screening in High-Throughput Experimentation for Heterogeneously Catalyzed Gas-Phase Reactions. , 2005, , 19-61.		9
23	Carbonylation of Glycerol and Other Polyols: A High Throughput Study of Feasibility. Topics in Catalysis, 2010, 53, 28-34.	2.8	9
24	On the Bonding Properties of Diphosphanylmethanide Complexes with the Group-14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent Oxidation States. European Journal of Inorganic Chemistry, 1999, 1999, 1155-1159.	2.0	8
25	Retrospective Hit-Deconvolution of Mixed Metal Oxides: Spotting Structure-Property-Relationships in Gas Phase Oxidation Catalysis Through High Throughput Experimentation. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 51-57.	1.1	6
26	Structure oriented library design in gas phase oxidation catalysis. Catalysis Today, 2008, 137, 36-43.	4.4	6
27	Using open-source software technologies and standardized data structures to build advanced applications for high-throughput experimentation environments. Review of Scientific Instruments, 2005, 76, 062203.	1.3	4
28	A study of some unusual hydrides: BeH2, BeH+6 and SH6. Molecular Physics, 1999, 96, 711-718.	1.7	4
29	High-Throughput Screening Technology for Automotive Applications. Chemie-Ingenieur-Technik, 2014, 86, 1941-1947.	0.8	3
30	Screening NOx Storage Performance—Demonstrating a High Throughput Approach for Evaluating Emission Control Catalysts under Transient Conditions. Catalysts, 2019, 9, 776.	3.5	3