List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/678900/publications.pdf Version: 2024-02-01

		9786	4342
274	32,205	73	173
papers	citations	h-index	g-index
341	341	341	43082
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
4	Antigen-Specific Inhibition of Effector T Cell Function in Humans after Injection of Immature Dendritic Cells. Journal of Experimental Medicine, 2001, 193, 233-238.	8.5	1,268
5	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
6	Human Dendritic Cells Activate Resting Natural Killer (NK) Cells and Are Recognized via the NKp30 Receptor by Activated NK Cells. Journal of Experimental Medicine, 2002, 195, 343-351.	8.5	877
7	Endogenous MHC Class II Processing of a Viral Nuclear Antigen After Autophagy. Science, 2005, 307, 593-596.	12.6	767
8	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
9	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
10	Antigen-Loading Compartments for Major Histocompatibility Complex Class II Molecules Continuously Receive Input from Autophagosomes. Immunity, 2007, 26, 79-92.	14.3	608
11	The Abundant NK Cells in Human Secondary Lymphoid Tissues Require Activation to Express Killer Cell Ig-Like Receptors and Become Cytolytic. Journal of Immunology, 2004, 172, 1455-1462.	0.8	523
12	Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16606-16611.	7.1	508
13	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
14	Autophagy and autophagy-related proteins in the immune system. Nature Immunology, 2015, 16, 1014-1024.	14.5	465
15	Matrix Protein 2 of Influenza A Virus Blocks Autophagosome Fusion with Lysosomes. Cell Host and Microbe, 2009, 6, 367-380.	11.0	454
16	CD56brightCD16â^' Killer Ig-Like Receptorâ^' NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation. Journal of Immunology, 2007, 178, 4947-4955.	0.8	430
17	Antiviral immune responses: triggers of or triggered by autoimmunity?. Nature Reviews Immunology, 2009, 9, 246-258.	22.7	410
18	Innate and Adaptive Immunity through Autophagy. Immunity, 2007, 27, 11-21.	14.3	392

#	Article	lF	CITATIONS
19	Dendritic cell maturation by innate lymphocytes. Journal of Experimental Medicine, 2005, 202, 203-207.	8.5	356
20	Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance. Journal of Clinical Investigation, 2014, 124, 1810-1820.	8.2	340
21	Human Cd4+ T Lymphocytes Consistently Respond to the Latent Epstein-Barr Virus Nuclear Antigen Ebna1. Journal of Experimental Medicine, 2000, 191, 1649-1660.	8.5	323
22	NK Cell Compartments and Their Activation by Dendritic Cells. Journal of Immunology, 2004, 172, 1333-1339.	0.8	271
23	Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. Journal of Experimental Medicine, 2009, 206, 1423-1434.	8.5	269
24	Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nature Reviews Microbiology, 2019, 17, 691-700.	28.6	254
25	Enhancing Immunity Through Autophagy. Annual Review of Immunology, 2009, 27, 423-449.	21.8	250
26	T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?. Nature Reviews Immunology, 2014, 14, 768-774.	22.7	248
27	EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-Î ³ and IL-2. Journal of Experimental Medicine, 2008, 205, 1763-1773.	8.5	244
28	Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. Journal of Clinical Investigation, 2015, 125, 4160-4170.	8.2	229
29	Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain, 2006, 129, 1493-1506.	7.6	204
30	Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection. Cell Reports, 2013, 5, 1489-1498.	6.4	196
31	Elevated Epstein–Barr virusâ€encoded nuclear antigenâ€1 immune responses predict conversion to multiple sclerosis. Annals of Neurology, 2010, 67, 159-169.	5.3	181
32	Spontaneous Lytic Replication and Epitheliotropism Define an Epstein-Barr Virus Strain Found in Carcinomas. Cell Reports, 2013, 5, 458-470.	6.4	177
33	Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. Journal of Cell Biology, 2013, 203, 757-766.	5.2	172
34	Role for early-differentiated natural killer cells in infectious mononucleosis. Blood, 2014, 124, 2533-2543.	1.4	169
35	Mature Human Langerhans Cells Derived from CD34+ Hematopoietic Progenitors Stimulate Greater Cytolytic T Lymphocyte Activity in the Absence of Bioactive IL-12p70, by Either Single Peptide Presentation or Cross-Priming, Than Do Dermal-Interstitial or Monocyte-Derived Dendritic Cells. Journal of Immunology, 2004, 173, 2780-2791.	0.8	165
36	Epstein-Barr Nuclear Antigen 1-Specific CD4+ Th1 Cells Kill Burkitt's Lymphoma Cells. Journal of Immunology, 2002, 169, 1593-1603.	0.8	155

#	Article	IF	CITATIONS
37	Infectious causes of multiple sclerosis. Lancet Neurology, The, 2006, 5, 887-894.	10.2	151
38	HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell, 2020, 183, 1264-1281.e20.	28.9	133
39	EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. Journal of Clinical Investigation, 2012, 122, 1487-1502.	8.2	132
40	NK cells of human secondary lymphoid tissues enhance T cell polarizationvia IFN-Î ³ secretion. European Journal of Immunology, 2006, 36, 2394-2400.	2.9	131
41	Noncytotoxic Functions of NK Cells: Direct Pathogen Restriction and Assistance to Adaptive Immunity. Journal of Immunology, 2008, 180, 7785-7791.	0.8	130
42	Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8 + TÂCell Responses. Cell Reports, 2016, 15, 1076-1087.	6.4	130
43	β-Amyloid is a substrate of autophagy in sporadic inclusion body myositis. Annals of Neurology, 2007, 61, 476-483.	5.3	126
44	Cellular immune controls over Epstein–Barr virus infection: new lessons from the clinic and the laboratory. Trends in Immunology, 2014, 35, 159-169.	6.8	121
45	Autophagy Proteins Promote Repair of Endosomal Membranes Damaged by the Salmonella Type Three Secretion System 1. Cell Host and Microbe, 2015, 18, 527-537.	11.0	116
46	Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood, 2008, 112, 1231-1239.	1.4	115
47	Autophagy in innate and adaptive immunity against intracellular pathogens. Journal of Molecular Medicine, 2006, 84, 194-202.	3.9	113
48	Tonsilar NK Cells Restrict B Cell Transformation by the Epstein-Barr Virus via IFN-γ. PLoS Pathogens, 2008, 4, e27.	4.7	113
49	CD141+ dendritic cells produce prominent amounts of IFN-Î \pm after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood, 2013, 121, 5034-5044.	1.4	113
50	Regulatory NK-Cell Functions in Inflammation and Autoimmunity. Molecular Medicine, 2009, 15, 352-358.	4.4	113
51	Autophagy Beyond Intracellular MHC Class II Antigen Presentation. Trends in Immunology, 2016, 37, 755-763.	6.8	111
52	Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood, 2005, 105, 266-273.	1.4	110
53	EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. Journal of Clinical Investigation, 2001, 107, 121-130.	8.2	109
54	Dendritic Cells Cross-Present Latency Gene Products from Epstein-Barr Virus–Transformed B Cells and Expand Tumor-Reactive Cd8+ Killer T Cells. Journal of Experimental Medicine, 2001, 193, 405-412.	8.5	104

#	Article	IF	CITATIONS
55	Human NK cells of mice with reconstituted human immune system components require preactivation to acquire functional competence. Blood, 2010, 116, 4158-4167.	1.4	102
56	Persistent KSHV Infection Increases EBV-Associated Tumor Formation InÂVivo via Enhanced EBV Lytic Gene Expression. Cell Host and Microbe, 2017, 22, 61-73.e7.	11.0	102
57	MxB is an interferon-induced restriction factor of human herpesviruses. Nature Communications, 2018, 9, 1980.	12.8	102
58	Autophagy in the regulation of pathogen replication and adaptive immunity. Trends in Immunology, 2012, 33, 475-487.	6.8	101
59	Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Multiple Sclerosis Journal, 2018, 24, 590-603.	3.0	101
60	TNF-α Induces Macroautophagy and Regulates MHC Class II Expression in Human Skeletal Muscle Cells. Journal of Biological Chemistry, 2011, 286, 3970-3980.	3.4	98
61	Epstein-Barr Virus: Environmental Trigger of Multiple Sclerosis?. Journal of Virology, 2007, 81, 6777-6784.	3.4	97
62	Viral triggers of multiple sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 132-140.	3.8	95
63	Autophagy and Mammalian Viruses. Advances in Virus Research, 2016, 95, 149-195.	2.1	92
64	Cytolytic CD4 + -T-Cell Clones Reactive to EBNA1 Inhibit Epstein-Barr Virus-Induced B-Cell Proliferation. Journal of Virology, 2003, 77, 12088-12104.	3.4	91
65	Antigen processing via autophagy—not only for MHC class II presentation anymore?. Current Opinion in Immunology, 2010, 22, 89-93.	5.5	91
66	Antigen Processing for MHC Class II Presentation via Autophagy. Frontiers in Immunology, 2012, 3, 9.	4.8	91
67	Autophagy proteins in antigen processing for presentation on <scp>MHC</scp> molecules. Immunological Reviews, 2016, 272, 17-27.	6.0	90
68	Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. Journal of Immunological Methods, 2001, 258, 111-126.	1.4	89
69	Immune escape by Epstein–Barr virus associated malignancies. Seminars in Cancer Biology, 2008, 18, 381-387.	9.6	89
70	NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Rα. Journal of Clinical Investigation, 2007, 117, 3316-3329.	8.2	89
71	Autophagy and antigen presentation. Cellular Microbiology, 2006, 8, 891-898.	2.1	86
72	Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 2020, 12, e8662.	6.9	82

#	Article	IF	CITATIONS
73	Virus-specific CD4+ T cells: ready for direct attack. Journal of Experimental Medicine, 2006, 203, 805-808.	8.5	80
74	Macroautophagy Proteins Assist Epstein Barr Virus Production and Get Incorporated Into the Virus Particles. EBioMedicine, 2014, 1, 116-125.	6.1	78
75	LC3-associated phagocytosis. Autophagy, 2014, 10, 526-528.	9.1	74
76	Epstein-Barr Virus Nuclear Antigen 1. Journal of Experimental Medicine, 2004, 199, 1301-1304.	8.5	68
77	Human NK Cells Kill Resting but Not Activated Microglia via NKG2D- and NKp46-Mediated Recognition. Journal of Immunology, 2008, 181, 6170-6177.	0.8	67
78	ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4 ⁺ T cell pathogenicity during CNS inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11228-E11237.	7.1	67
79	Children with endemic Burkitt lymphoma are deficient in EBNA1â€specific IFNâ€Î³ T cell responses. International Journal of Cancer, 2009, 124, 1721-1726.	5.1	63
80	EBV in MS: guilty by association?. Trends in Immunology, 2009, 30, 243-248.	6.8	61
81	Targeting dendritic cells to treat multiple sclerosis. Nature Reviews Neurology, 2010, 6, 499-507.	10.1	61
82	Adoptive Transfer of EBV Specific CD8+ T Cell Clones Can Transiently Control EBV Infection in Humanized Mice. PLoS Pathogens, 2014, 10, e1004333.	4.7	60
83	A Distinct Subpopulation of Human NK Cells Restricts B Cell Transformation by EBV. Journal of Immunology, 2013, 191, 4989-4995.	0.8	59
84	Dendritic Cells Initiate Immune Control of Epstein-Barr Virus Transformation of B Lymphocytes In Vitro. Journal of Experimental Medicine, 2003, 198, 1653-1663.	8.5	57
85	DECâ€205/CD205 ⁺ dendritic cells are abundant in the white pulp of the human spleen, including the border region between the red and white pulp. Immunology, 2008, 123, 438-446.	4.4	57
86	Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and Î ³ δT cells. Journal of Experimental Medicine, 2017, 214, 1827-1841.	8.5	57
87	CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo. PLoS Pathogens, 2019, 15, e1007748.	4.7	57
88	Dendritic Cell Interactions with NK Cells from Different Tissues. Journal of Clinical Immunology, 2009, 29, 265-273.	3.8	55
89	Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity. Journal of Clinical Investigation, 2012, 122, 1393-1402.	8.2	55
90	Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cellular and Molecular Life Sciences, 2011, 68, 3505-3518.	5.4	53

#	Article	IF	CITATIONS
91	Beclin-1 Targeting for Viral Immune Escape. Viruses, 2011, 3, 1166-1178.	3.3	53
92	Attenuated immune control of Epstein–Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLAâ€ÐR15. European Journal of Immunology, 2021, 51, 64-75.	2.9	53
93	Increased Frequency of EBV-Specific Effector Memory CD8+ T Cells Correlates with Higher Viral Load in Rheumatoid Arthritis. Journal of Immunology, 2008, 181, 991-1000.	0.8	52
94	Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia, 2020, 34, 2688-2703.	7.2	52
95	Distinct memory CD4+ T-cell subsets mediate immune recognition of Epstein Barr virus nuclear antigen 1 in healthy virus carriers. Blood, 2007, 109, 1138-1146.	1.4	51
96	Aberrant Lck Signal via CD28 Costimulation Augments Antigen-Specific Functionality and Tumor Control by Redirected T Cells with PD-1 Blockade in Humanized Mice. Clinical Cancer Research, 2018, 24, 3981-3993.	7.0	50
97	Immunodeficiencies that predispose to pathologies by human oncogenic Î ³ -herpesviruses. FEMS Microbiology Reviews, 2019, 43, 181-192.	8.6	49
98	Dendritic Cell Derived Cytokines in Human Natural Killer Cell Differentiation and Activation. Frontiers in Immunology, 2013, 4, 365.	4.8	48
99	NK Cell Influence on the Outcome of Primary Epstein–Barr Virus Infection. Frontiers in Immunology, 2016, 7, 323.	4.8	48
100	Humanized mouse models for Epstein Barr virus infection. Current Opinion in Virology, 2017, 25, 113-118.	5.4	48
101	Heterologous prime-boost vaccination protects against EBV antigen–expressing lymphomas. Journal of Clinical Investigation, 2019, 129, 2071-2087.	8.2	48
102	The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. Journal of Immunology, 2016, 196, 64-71.	0.8	47
103	Vaccination against the Epstein–Barr virus. Cellular and Molecular Life Sciences, 2020, 77, 4315-4324.	5.4	47
104	Mice with human immune system components as in vivo models for infections with human pathogens. Immunology and Cell Biology, 2011, 89, 408-416.	2.3	46
105	Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1. Blood, 2012, 119, 5182-5190.	1.4	46
106	Infectious diseases in humanized mice. European Journal of Immunology, 2013, 43, 2246-2254.	2.9	46
107	The Autophagic Machinery in Viral Exocytosis. Frontiers in Microbiology, 2017, 8, 269.	3.5	45
108	Poorly cytotoxic terminally differentiated CD56negCD16pos NK cells accumulate in Kenyan children with Burkitt lymphomas. Blood Advances, 2018, 2, 1101-1114.	5.2	45

#	Article	IF	CITATIONS
109	Dendritic Cell–Mediated Immune Humanization of Mice: Implications for Allogeneic and Xenogeneic Stem Cell Transplantation. Journal of Immunology, 2014, 192, 4636-4647.	0.8	44
110	MDSCs in infectious diseases: regulation, roles, and readjustment. Cancer Immunology, Immunotherapy, 2019, 68, 673-685.	4.2	44
111	Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Medicine, 2016, 14, 163.	5.5	43
112	Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nature Communications, 2021, 12, 1508.	12.8	43
113	Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells. Blood, 2011, 118, 6487-6498.	1.4	40
114	Cytokine Complex–expanded Natural Killer Cells Improve Allogeneic Lung Transplant Function via Depletion of Donor Dendritic Cells. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1349-1359.	5.6	40
115	Innate immune responses against Epstein Barr virus infection. Journal of Leukocyte Biology, 2013, 94, 1185-1190.	3.3	39
116	CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy, 2021, 17, 1244-1258.	9.1	39
117	Robust T-cell stimulation by Epstein-Barr virus–transformed B cells after antigen targeting to DEC-205. Blood, 2013, 121, 1584-1594.	1.4	38
118	Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. Journal of Allergy and Clinical Immunology, 2019, 143, 1496-1512.e11.	2.9	38
119	Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells. Blood Advances, 2017, 1, 2679-2691.	5.2	38
120	Membrane Transfer from Tumor Cells Overcomes Deficient Phagocytic Ability of Plasmacytoid Dendritic Cells for the Acquisition and Presentation of Tumor Antigens. Journal of Immunology, 2014, 192, 824-832.	0.8	35
121	MicroRNAs of Epstein-Barr Virus Attenuate T-Cell-Mediated Immune Control <i>In Vivo</i> . MBio, 2019, 10, .	4.1	35
122	Autophagy in MHC Class II Presentation of Endogenous Antigens. Current Topics in Microbiology and Immunology, 2009, 335, 123-140.	1.1	34
123	Epstein–Barr Virus-Specific Immune Control by Innate Lymphocytes. Frontiers in Immunology, 2017, 8, 1658.	4.8	34
124	NK cells interactions with dendritic cells shape innate and adaptive immunity. Frontiers in Bioscience - Landmark, 2008, Volume, 6443.	3.0	33
125	A New Hope for CD56negCD16pos NK Cells as Unconventional Cytotoxic Mediators: An Adaptation to Chronic Diseases. Frontiers in Cellular and Infection Microbiology, 2020, 10, 162.	3.9	33
126	Cognate HLA absence in trans diminishes human NK cell education. Journal of Clinical Investigation, 2016, 126, 3772-3782.	8.2	33

#	Article	IF	CITATIONS
127	The autophagy machinery restrains iNKT cell activation through CD1D1 internalization. Autophagy, 2017, 13, 1025-1036.	9.1	32
128	The neuropeptide galanin modulates natural killer cell function. Neuropeptides, 2017, 64, 109-115.	2.2	32
129	Patients with Epstein Barr virusâ€positive lymphomas have decreased CD4 ⁺ Tâ€cell responses to the viral nuclear antigen 1. International Journal of Cancer, 2008, 123, 2824-2831.	5.1	31
130	Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Seminars in Cancer Biology, 2013, 23, 391-396.	9.6	31
131	Targeting Beclin 1 for viral subversion of macroautophagy. Autophagy, 2010, 6, 166-167.	9.1	30
132	Role of the 2B4 Receptor in CD8 ⁺ T-Cell-Dependent Immune Control of Epstein-Barr Virus Infection in Mice With Reconstituted Human Immune System Components. Journal of Infectious Diseases, 2015, 212, 803-807.	4.0	30
133	Plasmacytoid dendritic cells respond to Epstein-Barr virus infection with a distinct type I interferon subtype profile. Blood Advances, 2019, 3, 1129-1144.	5.2	30
134	MHC presentation via autophagy and how viruses escape from it. Seminars in Immunopathology, 2010, 32, 373-381.	6.1	29
135	Intrathymic epsteinâ€barr virus infection is not a prominent feature of myasthenia gravis. Annals of Neurology, 2011, 70, 508-514.	5.3	29
136	Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy, 2017, 13, 1064-1075.	9.1	29
137	EBV persistence without its EBNA3A and 3C oncogenes in vivo. PLoS Pathogens, 2018, 14, e1007039.	4.7	28
138	Animal models of Epstein Barr virus infection. Journal of Immunological Methods, 2014, 410, 80-87.	1.4	27
139	Do natural killer cells accelerate or prevent autoimmunity in multiple sclerosis?. Brain, 2008, 131, 1681-1683.	7.6	26
140	Of LAP, CUPS, and DRibbles – Unconventional Use of Autophagy Proteins for MHC Restricted Antigen Presentation. Frontiers in Immunology, 2015, 6, 200.	4.8	26
141	Macroautophagy as a Pathomechanism in Sporadic Inclusion Body Myositis. Autophagy, 2007, 3, 384-386.	9.1	25
142	Impaired IFN-Î ³ production and proliferation of NK cells in Multiple Sclerosis. International Immunology, 2011, 23, 139-148.	4.0	25
143	Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein. Viruses, 2016, 8, 51.	3.3	24
144	Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nature Communications, 2016, 7, 13708.	12.8	24

#	Article	IF	CITATIONS
145	IL-1 <i>Ĵ²</i> -Induced Accumulation of Amyloid: Macroautophagy in Skeletal Muscle Depends on ERK. Mediators of Inflammation, 2017, 2017, 1-7.	3.0	23
146	Endocytosis regulation by autophagy proteins in MHC restricted antigen presentation. Current Opinion in Immunology, 2018, 52, 68-73.	5.5	23
147	Infection and immune control of human oncogenic Î ³ -herpesviruses in humanized mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180296.	4.0	23
148	Redirecting T Cells against Epstein–Barr Virus Infection and Associated Oncogenesis. Cells, 2020, 9, 1400.	4.1	23
149	The antibacterial substance taurolidine exhibits anti-neoplastic action based on a mixed type of programmed cell death. Autophagy, 2009, 5, 194-210.	9.1	22
150	Animal models of Epstein Barr virus infection. Current Opinion in Virology, 2015, 13, 6-10.	5.4	22
151	Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells Oncolmmunology, 2018, 7, e1407897.	4.6	22
152	Influenza A Virus Induces Autophagosomal Targeting of Ribosomal Proteins. Molecular and Cellular Proteomics, 2018, 17, 1909-1921.	3.8	22
153	Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice. PLoS Pathogens, 2020, 16, e1008477.	4.7	22
154	EBV renders B cells susceptible to HIV-1 in humanized mice. Life Science Alliance, 2020, 3, e202000640.	2.8	22
155	Dendritic Cells Expand Epstein Barr Virus Specific CD8+ T Cell Responses More Efficiently Than EBV Transformed B Cells. Human Immunology, 2005, 66, 938-949.	2.4	21
156	The Macroautophagy Machinery in Endo- and Exocytosis. Journal of Molecular Biology, 2017, 429, 473-485.	4.2	21
157	Autophagyâ€mediated antigen processing in CD4 ⁺ T cell tolerance and immunity. FEBS Letters, 2010, 584, 1405-1410.	2.8	20
158	EBV-specific immune responses in patients with multiple sclerosis responding to IFNβ therapy. Multiple Sclerosis Journal, 2012, 18, 605-609.	3.0	20
159	Role of Human Natural Killer Cells during Epstein-Barr Virus Infection. Critical Reviews in Immunology, 2014, 34, 501-507.	0.5	20
160	Both mature KIR+ and immature KIRâ^' NK cells control pediatric acute B-cell precursor leukemia in NOD.Cg-Prkdcscid IL2rgtmWjl/Sz mice. Blood, 2014, 124, 3914-3923.	1.4	20
161	Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice. Journal of Virology, 2015, 89, 11711-11714.	3.4	20
162	Autophagy Proteins in Viral Exocytosis and Anti-Viral Immune Responses. Viruses, 2017, 9, 288.	3.3	20

#	Article	IF	CITATIONS
163	Autophagy regulates longâ€ŧerm crossâ€presentation by murine dendritic cells. European Journal of Immunology, 2021, 51, 835-847.	2.9	20
164	The Macroautophagy Machinery in MHC Restricted Antigen Presentation. Frontiers in Immunology, 2021, 12, 628429.	4.8	20
165	TNF-α upregulates macroautophagic processing of APP/β-amyloid in a human rhabdomyosarcoma cell line. Journal of the Neurological Sciences, 2013, 325, 103-107.	0.6	19
166	Autophagy proteins influence endocytosis for MHC restricted antigen presentation. Seminars in Cancer Biology, 2020, 66, 110-115.	9.6	19
167	PD-1 Blockade Aggravates Epstein–Barr Virus+ Post-Transplant Lymphoproliferative Disorder in Humanized Mice Resulting in Central Nervous System Involvement and CD4+ T Cell Dysregulations. Frontiers in Oncology, 2020, 10, 614876.	2.8	19
168	CD27 is required for protective lytic EBV antigen–specific CD8+ T-cell expansion. Blood, 2021, 137, 3225-3236.	1.4	19
169	Killer immunoglobulin-like receptor locus polymorphisms in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 951-958.	3.0	18
170	ATGs help MHC class II, but inhibit MHC class I antigen presentation. Autophagy, 2016, 12, 1681-1682.	9.1	18
171	Co-infection of Cytomegalovirus and Epstein-Barr Virus Diminishes the Frequency of CD56dimNKG2A+KIRâ~ NK Cells and Contributes to Suboptimal Control of EBV in Immunosuppressed Children With Post-transplant Lymphoproliferative Disorder. Frontiers in Immunology, 2020, 11, 1231.	4.8	18
172	Antigen stimulation induces HIV envelope gp120-specific CD4+ T cells to secrete CCR5 ligands and suppress HIV infection. Virology, 2007, 369, 214-225.	2.4	17
173	Autophagy in herpesvirus immune control and immune escape. Herpesviridae, 2011, 2, 2.	2.7	17
174	Regulation of innate immunity by the molecular machinery of macroautophagy. Cellular Microbiology, 2014, 16, 1627-1636.	2.1	17
175	Autophagy Proteins in Phagocyte Endocytosis and Exocytosis. Frontiers in Immunology, 2017, 8, 1183.	4.8	17
176	Human CD34 ⁺ Hematopoietic Stem Cell–Engrafted NSG Mice: Morphological and Immunophenotypic Features. Veterinary Pathology, 2021, 58, 161-180.	1.7	17
177	Immune control of oncogenic Î ³ -herpesviruses. Current Opinion in Virology, 2015, 14, 79-86.	5.4	16
178	The Role of Lytic Infection for Lymphomagenesis of Human Î ³ -Herpesviruses. Frontiers in Cellular and Infection Microbiology, 2021, 11, 605258.	3.9	16
179	KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation inÂvivo upon KSHV/EBV dual infection. Cell Reports, 2021, 35, 109056.	6.4	16
180	Antigen processing by macroautophagy for MHC presentation. Frontiers in Immunology, 2011, 2, 42.	4.8	15

#	Article	IF	CITATIONS
181	Dendritic cells during Epstein Barr virus infection. Frontiers in Microbiology, 2014, 5, 308.	3.5	15
182	Defective nuclear entry of hydrolases prevents neutrophil extracellular trap formation in patients with chronic granulomatous disease. Journal of Allergy and Clinical Immunology, 2015, 136, 1703-1706.e5.	2.9	14
183	EBV Infection of Mice with Reconstituted Human Immune System Components. Current Topics in Microbiology and Immunology, 2015, 391, 407-423.	1.1	14
184	Epstein Barr virus — a tumor virus that needs cytotoxic lymphocytes to persist asymptomatically. Current Opinion in Virology, 2016, 20, 34-39.	5.4	14
185	Tâ€cell memory in tissues. European Journal of Immunology, 2021, 51, 1310-1324.	2.9	14
186	Regulatory T Cells in Endemic Burkitt Lymphoma Patients Are Associated with Poor Outcomes: A Prospective, Longitudinal Study. PLoS ONE, 2016, 11, e0167841.	2.5	14
187	Nonâ€cytotoxic protection by human NK cells in mucosal secondary lymphoid tissues. European Journal of Immunology, 2008, 38, 2946-2948.	2.9	13
188	Macroautophagy in Immunity and Tolerance. Traffic, 2009, 10, 615-620.	2.7	13
189	Cytotoxicity in Epstein Barr virus specific immune control. Current Opinion in Virology, 2021, 46, 1-8.	5.4	13
190	Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms, 2021, 9, 2191.	3.6	13
191	Interactions of Human Myeloid Cells with Natural Killer Cell Subsets In Vitro and In Vivo. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	12
192	Diverting autophagic membranes for exocytosis. Autophagy, 2015, 11, 425-427.	9.1	12
193	Non-canonical Functions of Macroautophagy Proteins During Endocytosis by Myeloid Antigen Presenting Cells. Frontiers in Immunology, 2018, 9, 2765.	4.8	12
194	Epstein-Barr Virus Induces Expression of the LPAM-1 Integrin in B Cells <i>In Vitro</i> and <i>In Vivo</i> . Journal of Virology, 2019, 93, .	3.4	12
195	Autophagy in immunity. Progress in Molecular Biology and Translational Science, 2020, 172, 67-85.	1.7	12
196	Macroautophagy during Innate Immune Activation. Frontiers in Microbiology, 2011, 2, 72.	3.5	11
197	Kaposi Sarcoma-Associated Herpesvirus Infection and Endemic Burkitt Lymphoma. Journal of Infectious Diseases, 2020, 222, 111-120.	4.0	11
198	ATG5 in microglia does not contribute vitally to autoimmune neuroinflammation in mice. Autophagy, 2021, 17, 3566-3576.	9.1	11

#	Article	IF	CITATIONS
199	Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Frontiers in Microbiology, 2021, 12, 657387.	3.5	10
200	Localization and MHC Class II Presentation of Antigens Targeted for Macroautophagy. Methods in Molecular Biology, 2008, 445, 213-225.	0.9	9
201	Selective Macroautophagy for Immunity. Immunity, 2010, 32, 298-299.	14.3	9
202	Autophagy-Dependent Reactivation of Epstein-Barr Virus Lytic Cycle and Combinatorial Effects of Autophagy-Dependent and Independent Lytic Inducers in Nasopharyngeal Carcinoma. Cancers, 2019, 11, 1871.	3.7	9
203	Tumor Microenvironment Conditioning by Abortive Lytic Replication of Oncogenic Î ³ -Herpesviruses. Advances in Experimental Medicine and Biology, 2020, 1225, 127-135.	1.6	9
204	Natural killer cells in herpesvirus infections. F1000Research, 2017, 6, 1231.	1.6	9
205	Differential Dynamics of HIV Infection in Humanized MISTRG versus MITRG Mice. ImmunoHorizons, 2017, 1, 162-175.	1.8	9
206	Macroautophagy—friend or foe of viral replication?. EMBO Reports, 2013, 14, 483-484.	4.5	8
207	Influenza A Virus Lures Autophagic Protein LC3 to Budding Sites. Cell Host and Microbe, 2014, 15, 130-131.	11.0	8
208	Analysis of LC3-Associated Phagocytosis and Antigen Presentation. Methods in Molecular Biology, 2017, 1519, 145-168.	0.9	8
209	Autophagy Pathways in CNS Myeloid Cell Immune Functions. Trends in Neurosciences, 2020, 43, 1024-1033.	8.6	8
210	Autophagy of pathogens alarms the immune system and participates in its effector functions. Swiss Medical Weekly, 2011, 141, w13198.	1.6	8
211	Canonical and Non-Canonical Functions of the Autophagy Machinery in MHC Restricted Antigen Presentation. Frontiers in Immunology, 2022, 13, 868888.	4.8	8
212	Reduced frequency of cytotoxic CD56dim CD16+ NK cells leads to impaired antibody-dependent degranulation in EBV-positive classical Hodgkin lymphoma. Cancer Immunology, Immunotherapy, 2022, 71, 13-24.	4.2	7
213	Non-canonical functions of autophagy proteins in immunity and infection. Molecular Aspects of Medicine, 2021, 82, 100987.	6.4	7
214	Antigen Processing for MHC Presentation via Macroautophagy. Methods in Molecular Biology, 2013, 960, 473-488.	0.9	7
215	Natural Killer Cell Responses during Human γ-Herpesvirus Infections. Vaccines, 2021, 9, 655.	4.4	7
216	Cytolytic T lymphocytes from HLA-B8+ donors frequently recognize the Hodgkin's lymphoma associated latent membrane protein 2 of Epstein Barr virus. Herpesviridae, 2011, 2, 4.	2.7	6

#	Article	IF	CITATIONS
217	Viral infections in mice with reconstituted human immune system components. Immunology Letters, 2014, 161, 118-124.	2.5	6
218	Human Î ³ -Herpesvirus Infection, Tumorigenesis, and Immune Control in Mice with Reconstituted Human Immune System Components. Frontiers in Immunology, 2018, 9, 238.	4.8	6
219	Immune Control and Vaccination against the Epstein–Barr Virus in Humanized Mice. Vaccines, 2019, 7, 217.	4.4	6
220	Antigen processing for MHC presentation by autophagy. F1000 Biology Reports, 2010, 2, 61.	4.0	6
221	Modification of EBV-Associated Pathologies and Immune Control by Coinfections. Frontiers in Oncology, 2021, 11, 756480.	2.8	6
222	Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules, 2022, 12, 38.	4.0	6
223	Morbus Crohna disease of failing macroautophagy in the immune system?. International Immunology, 2009, 21, 1205-1211.	4.0	5
224	Autophagy for Better or Worse during Infectious Diseases. Frontiers in Immunology, 2013, 4, 205.	4.8	5
225	An immunocompetent patient with a recurrence-free Epstein-Barr virus positive plasmacytoma possesses robust Epstein-Barr virus specific T-cell responses. Haematologica, 2017, 102, e419-e422.	3.5	5
226	LC3â€Associated Phagocytosis and Antigen Presentation. Current Protocols in Immunology, 2018, 123, e60.	3.6	5
227	The Role of Dendritic Cells in Immune Control and Vaccination against Î ³ -Herpesviruses. Viruses, 2019, 11, 1125.	3.3	5
228	MHC Class I Internalization via Autophagy Proteins. Methods in Molecular Biology, 2019, 1880, 455-477.	0.9	5
229	Humanised mouse models for haematopoiesis and infectious diseases. Swiss Medical Weekly, 2017, 147, w14516.	1.6	5
230	PLK1â€dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBVâ€infected mice. EMBO Reports, 2021, 22, e53007.	4.5	5
231	Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the Câ€ŧype lectin receptor Langerin. European Journal of Immunology, 2022, 52, 1829-1841.	2.9	5
232	Chapter 24 Monitoring Macroautophagy by Major Histocompatibility Complex Class II Presentation of Targeted Antigens. Methods in Enzymology, 2009, 452, 403-421.	1.0	4
233	The different autophagic roads by which phagosomes travel to lysosomes. EMBO Journal, 2015, 34, 2391-2392.	7.8	4
234	Live Long and Prosper for Antigen Cross-Presentation. Immunity, 2015, 43, 1028-1030.	14.3	4

#	Article	IF	CITATIONS
235	Impact of Fcl̂ ³ R variants on the response to alemtuzumab in multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 2586-2594.	3.7	4
236	IgA Triggers Cell Death of Neutrophils When Primed by Inflammatory Mediators. Journal of Immunology, 2020, 205, 2640-2648.	0.8	4
237	Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein–Barr Virus. Cancers, 2021, 13, 2275.	3.7	4
238	Kissing genetic MS risk loci to life. EBioMedicine, 2021, 72, 103594.	6.1	4
239	Autophagy in cellular transformation, survival and communication with the tumor microenvironment. Seminars in Cancer Biology, 2013, 23, 299-300.	9.6	3
240	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
241	Tissue resident TÂcell memory or how the magnificent seven are chilling in the bone. European Journal of Immunology, 2019, 49, 849-852.	2.9	3
242	Probing Reconstituted Human Immune Systems in Mice With Oncogenic Î ³ -Herpesvirus Infections. Frontiers in Immunology, 2020, 11, 581419.	4.8	3
243	Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Frontiers in Immunology, 2021, 12, 640918.	4.8	3
244	Measuring oxidation within LC3-associated phagosomes that optimizes MHC class II restricted antigen presentation. Methods in Cell Biology, 2021, 164, 187-200.	1.1	3
245	Interplay between IL-10, IFN-γ, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma. Cancers, 2021, 13, 5375.	3.7	3
246	Non-canonical roles of autophagy proteins in endocytosis and exocytosis. Biochemical Society Transactions, 2021, , .	3.4	3
247	Immune checkpoints in T cells during oncogenic γâ€herpesvirus infections. Journal of Medical Virology, 2023, 95, .	5.0	3
248	Editorial: Harnessing the Participation of Dendritic Cells in Immunity and Tolerance. Frontiers in Immunology, 2020, 11, 595841.	4.8	2
249	ILâ€10 induces IgG4 production in NODâ€≺i>scid Il2rγ ^{null} mice humanized by engraftment of peripheral blood mononuclear cells. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3525-3529.	5.7	2
250	Monitoring Antigen Processing for MHC Presentation via Macroautophagy. Methods in Molecular Biology, 2019, 1988, 357-373.	0.9	2
251	Experimental immunology in Zürich: The legacy of studying diseaseâ€related Ag. European Journal of Immunology, 2008, 38, 2924-2926.	2.9	1

Natural killer cells and autoimmunity. , 2010, , 461-467.

1

CHRISTIAN MÃ1/4NZ

#	Article	IF	CITATIONS
253	Dengue Virus: Protection by T Cells, Disease Exacerbation by Antibodies?. EBioMedicine, 2016, 13, 23-24.	6.1	1
254	Endogenous Major Histocompatibility Complex Class II Antigen Processing of Viral Antigens. , 2006, , 212-225.		0
255	Projection of an immunological self shadow to developing T cells via macroautophagy. Cell Research, 2008, 18, 1084-1086.	12.0	0
256	Autophagy in Autoimmunity. , 2014, , 257-262.		0
257	Autophagy in Antigen Processing for MHC Presentation to T Cells. , 2015, , 191-199.		0
258	Editorial overview: Viruses and cancer. Current Opinion in Virology, 2016, 20, iv-v.	5.4	0
259	Immunotherapy and Vaccine Development. Journal of Immunology Research, 2018, 2018, 1-2.	2.2	Ο
260	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	0
261	Autophagy in Autoimmunity. , 2020, , 305-317.		Ο
262	Noncanonical use of the autophagy machinery in antigen presentation. , 2021, , 117-131.		0
263	Regulation of the Macroautophagic Machinery, Cellular Differentiation, and Immune Responses by Human Oncogenic Î ³ -Herpesviruses. Viruses, 2021, 13, 859.	3.3	ο
264	Chikungunya Virus Envelope Protein E2 Provides aÂVector for Targeted Antigen Delivery to HumanADermal CD14+ Dendritic Cells. Journal of Investigative Dermatology, 2021, 141, 2985-2989.e5.	0.7	0
265	Immune Responses to Burkitt's Lymphoma. , 2013, , 227-240.		Ο
266	Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. Journal of Experimental Medicine, 2013, 210, 21013OIA64.	8.5	0
267	Phenotypical and Functional Properties of Antigen-Presenting Cells Derived from Humanized Mice. , 2014, , 193-205.		0
268	Maintenance and Function of Human CD8+ T Cells and NK Cells in Humanized Mice. , 2014, , 181-192.		0
269	Title is missing!. , 2020, 16, e1008477.		0
270	Title is missing!. , 2020, 16, e1008477.		0

#	Article	IF	CITATIONS
271	Title is missing!. , 2020, 16, e1008477.		0
272	Title is missing!. , 2020, 16, e1008477.		0
273	Title is missing!. , 2020, 16, e1008477.		0
274	Title is missing!. , 2020, 16, e1008477.		0