Ashlee J Howarth

List of Publications by Citations

Source: https://exaly.com/author-pdf/6788486/ashlee-j-howarth-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

59	5,959	32	70
papers	citations	h-index	g-index
70	7,2 05 ext. citations	12.3	6.27
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
59	Chemical, thermal and mechanical stabilities of metal®rganic frameworks. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1026
58	Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. <i>Chemical Society Reviews</i> , 2017 , 46, 3357-3385	58.5	557
57	MetalBrganic frameworks for heavy metal removal from water. <i>Coordination Chemistry Reviews</i> , 2018 , 358, 92-107	23.2	516
56	Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. <i>Accounts of Chemical Research</i> , 2017 , 50, 805-813	24.3	488
55	Best Practices for the Synthesis, Activation, and Characterization of Metal®rganic Frameworks. <i>Chemistry of Materials</i> , 2017 , 29, 26-39	9.6	341
54	High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7488-94	16.4	265
53	Catalytic Zirconium/Hafnium-Based Metal@rganic Frameworks. ACS Catalysis, 2017, 7, 997-1014	13.1	233
52	Bottom-up construction of a superstructure in a porous uranium-organic crystal. <i>Science</i> , 2017 , 356, 624	1-692.7	223
51	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. <i>Coordination Chemistry Reviews</i> , 2017 , 346, 101-111	23.2	206
50	Enzyme encapsulation in metalBrganic frameworks for applications in catalysis. <i>CrystEngComm</i> , 2017 , 19, 4082-4091	3.3	191
49	Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9001-5	16.4	186
48	A Hafnium-Based Metal-Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015 , 137, 13624-31	16.4	115
47	Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13809-13813	13	109
46	Rare-earth metal-organic frameworks: from structure to applications. <i>Chemical Society Reviews</i> , 2020 , 49, 7949-7977	58.5	107
45	MetalBrganic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015 , 17, 7245-7253	3.3	105
44	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal Drganic Framework and Examination of Anion Binding Motifs. <i>Chemistry of Materials</i> , 2018 , 30, 1277-1284	9.6	89
43	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1949-1953	16.4	88

42	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal®rganic Frameworks by Water-Assisted Mechanochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15841-15849	8.3	77
41	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal-Organic Framework. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 24555-24560	9.5	76
40	Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal-Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. <i>Chemistry - A European Journal</i> , 2017 , 23, 214-218	4.8	74
39	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. <i>Dalton Transactions</i> , 2016 , 45, 4150-3	³ 4.3	71
38	Detoxification of Chemical Warfare Agents Using a Zr -Based Metal-Organic Framework/Polymer Mixture. <i>Chemistry - A European Journal</i> , 2016 , 22, 14864-14868	4.8	68
37	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. <i>Nano Research</i> , 2018 , 11, 1850-1860	10	50
36	Rational Synthesis of Mixed-Metal Microporous Metal Drganic Frameworks with Controlled Composition Using Mechanochemistry. <i>Chemistry of Materials</i> , 2019 , 31, 5494-5501	9.6	49
35	Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal@rganic Framework. <i>Angewandte Chemie</i> , 2015 , 127, 9129-9133	3.6	49
34	A visually detectable pH responsive zirconium metal-organic framework. <i>Chemical Communications</i> , 2016 , 52, 3438-41	5.8	47
33	Adding to the Arsenal of Zirconium-Based Metal@rganic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 4349-435	5 2 .3	46
32	Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal-Organic Frameworks and Their Corresponding Thin Films. <i>ACS Applied Materials & Discourse & Discours</i>	9.5	46
31	Efficient extraction of sulfate from water using a Zr-metal-organic framework. <i>Dalton Transactions</i> , 2016 , 45, 93-7	4.3	43
30	A historical perspective on porphyrin-based metal-organic frameworks and their applications. <i>Coordination Chemistry Reviews</i> , 2021 , 429,	23.2	43
29	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal-organic frameworks. <i>Chemical Communications</i> , 2018 , 54, 6999-7002	5.8	39
28	Green applications of metalBrganic frameworks. <i>CrystEngComm</i> , 2018 , 20, 5899-5912	3.3	35
27	Efficient extraction of inorganic selenium from water by a Zr metalBrganic framework: investigation of volumetric uptake capacity and binding motifs. <i>CrystEngComm</i> , 2018 , 20, 6140-6145	3.3	26
26	Elucidating the Origin of Enhanced Phosphorescence Emission in the Solid State (EPESS) in Cyclometallated Iridium Complexes. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3657-3664	2.3	25
25	Tuning the emission lifetime in bis-cyclometalated iridium(III) complexes bearing iminopyrene ligands. <i>Inorganic Chemistry</i> , 2014 , 53, 11882-9	5.1	25

24	Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metalorganic framework. <i>Polyhedron</i> , 2018 , 151, 338-343	2.7	25
23	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal Drganic Frameworks. <i>Crystal Growth and Design</i> , 2018 , 18, 3222-3228	3.5	24
22	Simple, scalable mechanosynthesis of metal-organic frameworks using liquid-assisted resonant acoustic mixing (LA-RAM). <i>Chemical Science</i> , 2020 , 11, 7578-7584	9.4	22
21	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. <i>Angewandte Chemie</i> , 2018 , 130, 1967-1971	3.6	22
20	Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal@rganic Frameworks. ACS Applied Nano Materials, 2019, 2, 465-469	5.6	22
19	Towards hydroxamic acid linked zirconium metal@rganic frameworks. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1194-1199	7.8	17
18	Ammonia Capture within Zirconium Metal-Organic Frameworks: Reversible and Irreversible Uptake. <i>ACS Applied Materials & ACS Applied & </i>	9.5	15
17	Efficient activation of peroxymonosulfate by composites containing iron mining waste and graphitic carbon nitride for the degradation of acetaminophen. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123310	12.8	14
16	Building a shp: A Rare-Earth Metal Drganic Framework and Its Application in a Catalytic Photooxidation Reaction. <i>Chemistry of Materials</i> , 2021 , 33, 4163-4169	9.6	10
15	Bottom-Up Design and Generation of Complex Structures: A New Twist in Reticular Chemistry. <i>Crystal Growth and Design</i> , 2018 , 18, 449-455	3.5	10
14	Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. <i>Inorganic Chemistry Communication</i> , 2016 , 67, 60-65	3 ^{3.1}	9
13	Modulating Photo- and Radioluminescence in Tb(III) Cluster-Based Metal©rganic Frameworks1025-103	1	5
12	Modular Construction of Porous Hydrogen-Bonded Molecular Materials from Melams. <i>Chemistry - A European Journal</i> , 2020 , 26, 7026-7040	4.8	4
11	Synthetic approaches for accessing rare-earth analogues of UiO-66. <i>Chemical Communications</i> , 2021 , 57, 6121-6124	5.8	4
10	Phosphonates Meet Metal@rganic Frameworks: Towards CO2 Adsorption. <i>Israel Journal of Chemistry</i> , 2018 , 58, 1164-1170	3.4	4
9	Experimentalists and theorists need to talk. <i>Nature</i> , 2017 , 551, 433-434	50.4	3
8	Metal-organic frameworks for capture and detoxification of nerve agents 2019 , 179-202		3
7	Building a Shp: A New Rare-Earth Metal-Organic Framework and Its Application in a Catalytic Photo-Oxidation Reaction		3

LIST OF PUBLICATIONS

6	Organomimetic clusters: Precision in 3D. <i>Nature Chemistry</i> , 2017 , 9, 299-301	17.6	1	
5	Metal © rganic Frameworks: An Emerging Class of Solid-State Materials 2017 , 165-193		1	
4	Remodelling a shp: Transmetalation in a Rare-Earth Cluster-Based Metal-Organic Framework. <i>Inorganic Chemistry</i> , 2021 , 60, 11795-11802	5.1	1	
3	Adding to the Arsenal of Zirconium-Based Metal Drganic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 4266-42	26 6 .3	1	
2	MetalBrganic frameworks for the generation of reactive oxygen species. <i>Chemical Physics Reviews</i> , 2021 , 2, 041301	4.4	О	
1	Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. <i>Chemical Science</i> , 2021 , 12, 14499-14506	9.4	0	