
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6787939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 2016, 43, 2873-2879.	4.0	590
2	Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nature Geoscience, 2014, 7, 308-313.	12.9	324
3	Polar amplification in a coupled climate model with locked albedo. Climate Dynamics, 2009, 33, 629-643.	3.8	279
4	Aerosol indirect forcing in a global model with particle nucleation. Atmospheric Chemistry and Physics, 2009, 9, 239-260.	4.9	267
5	Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 2015, 32, 64-91.	4.3	223
6	Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part I: Impact of Drizzle on the Formation and Evolution of Open Cells. Journals of the Atmospheric Sciences, 2009, 66, 3237-3256.	1.7	206
7	Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3). Journal of Climate, 2007, 20, 4526-4547.	3.2	189
8	Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. Science, 2019, 363, .	12.6	185
9	Climate response of the South Asian monsoon system to anthropogenic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	173
10	Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geoscientific Model Development, 2013, 6, 765-782.	3.6	169
11	Precipitation-generated oscillations in open cellular cloud fields. Nature, 2010, 466, 849-852.	27.8	163
12	Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmospheric Chemistry and Physics, 2011, 11, 5431-5455.	4.9	143
13	Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmospheric Chemistry and Physics, 2017, 17, 5439-5457.	4.9	133
14	Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6894-6899.	7.1	130
15	Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part II: The Microphysics and Dynamics of the Boundary Region between Open and Closed Cells. Journals of the Atmospheric Sciences, 2009, 66, 3257-3275.	1.7	129
16	Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols?. Journal of Geophysical Research, 2007, 112, .	3.3	127
17	Satellite methods underestimate indirect climate forcing by aerosols. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13404-13408.	7.1	123
18	A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmospheric Environment, 2013, 70, 51-63.	4.1	122

#	Article	IF	CITATIONS
19	Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5804-5811.	7.1	120
20	Constraining cloud lifetime effects of aerosols using Aâ€Train satellite observations. Geophysical Research Letters, 2012, 39, .	4.0	117
21	Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophysical Research Letters, 2012, 39, .	4.0	113
22	Uncertainty quantification and parameter tuning in the CAM5 Zhangâ€McFarlane convection scheme and impact of improved convection on the global circulation and climate. Journal of Geophysical Research D: Atmospheres, 2013, 118, 395-415.	3.3	112
23	The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.	3.8	112
24	Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmospheric Chemistry and Physics, 2009, 9, 879-896.	4.9	110
25	Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China. Atmospheric Chemistry and Physics, 2016, 16, 10063-10082.	4.9	108
26	Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2618-2644.	3.8	105
27	Using an explicit emission tagging method in global modeling of sourceâ€receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,888.	3.3	92
28	Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5. Journal of Geophysical Research, 2012, 117, .	3.3	89
29	The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation. Geoscientific Model Development, 2011, 4, 137-168.	3.6	88
30	Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. Journal of Geophysical Research, 2009, 114, .	3.3	81
31	PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km. Monthly Weather Review, 2012, 140, 285-306.	1.4	80
32	Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 2015, 7, 382-411.	3.8	80
33	Protecting ice from melting under sunlight via radiative cooling. Science Advances, 2022, 8, eabj9756.	10.3	80
34	Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. Journal of Geophysical Research, 2007, 112, .	3.3	79
35	Evaluation of the Warm Rain Formation Process in Global Models with Satellite Observations. Journals of the Atmospheric Sciences, 2015, 72, 3996-4014.	1.7	79
36	Constraining the instantaneous aerosol influence on cloud albedo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4899-4904.	7.1	77

#	Article	IF	CITATIONS
37	Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 2017, 17, 4319-4336.	4.9	76
38	Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001851.	3.8	68
39	On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 2016, 16, 2765-2783.	4.9	67
40	The roles of cloud drop effective radius and <i>LWP</i> in determining rain properties in marine stratocumulus. Geophysical Research Letters, 2012, 39, .	4.0	66
41	Aerosol optical depth increase in partly cloudy conditions. Journal of Geophysical Research, 2012, 117,	3.3	65
42	Emergent constraints on future projections of the western North Pacific Subtropical High. Nature Communications, 2020, 11, 2802.	12.8	65
43	Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution. Journal of Geophysical Research, 2009, 114, .	3.3	64
44	The role of circulation features on black carbon transport into the Arctic in the Community Atmosphere Model version 5 (CAM5). Journal of Geophysical Research D: Atmospheres, 2013, 118, 4657-4669.	3.3	64
45	How does increasing horizontal resolution in a global climate model improve the simulation of aerosolâ€cloud interactions?. Geophysical Research Letters, 2015, 42, 5058-5065.	4.0	62
46	Cirrus clouds in a global climate model with a statistical cirrus cloud scheme. Atmospheric Chemistry and Physics, 2010, 10, 5449-5474.	4.9	60
47	Biomass burning aerosol transport and vertical distribution over the South Africanâ€Atlantic region. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6391-6415.	3.3	59
48	A simple model of global aerosol indirect effects. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6688-6707.	3.3	53
49	Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,046.	3.3	53
50	Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation. Atmospheric Chemistry and Physics, 2019, 19, 565-576.	4.9	53
51	Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 2021, 12, 6416.	12.8	53
52	A sensitivity analysis of cloud properties to CLUBB parameters in the singleâ€column Community Atmosphere Model (SCAM5). Journal of Advances in Modeling Earth Systems, 2014, 6, 829-858.	3.8	51
53	Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23947-23953.	7.1	51
54	Black Carbon Amplifies Haze Over the North China Plain by Weakening the East Asian Winter Monsoon. Geophysical Research Letters, 2019, 46, 452-460.	4.0	49

#	Article	IF	CITATIONS
55	Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16, 2477-2492.	4.9	47
56	Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbonâ€induced Tibetan Plateau warming. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5883-5902.	3.3	47
57	Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1401-1411.	3.3	46
58	Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem. Atmospheric Chemistry and Physics, 2012, 12, 8777-8796.	4.9	43
59	Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmospheric Chemistry and Physics, 2013, 13, 4963-4982.	4.9	43
60	Source Apportionments of Aerosols and Their Direct Radiative Forcing and Longâ€Term Trends Over Continental United States. Earth's Future, 2018, 6, 793-808.	6.3	42
61	Parameterizing deep convection using the assumed probability density function method. Geoscientific Model Development, 2015, 8, 1-19.	3.6	40
62	Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018. Atmospheric Chemistry and Physics, 2020, 20, 9067-9085.	4.9	40
63	A multiscale modeling framework model (superparameterized CAM5) with a higherâ€order turbulence closure: Model description and lowâ€cloud simulations. Journal of Advances in Modeling Earth Systems, 2015, 7, 484-509.	3.8	39
64	Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 2020, 20, 613-623.	4.9	39
65	A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model. Geoscientific Model Development, 2015, 8, 3801-3821.	3.6	39
66	Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1899-1918.	3.3	38
67	Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmospheric Chemistry and Physics, 2020, 20, 139-161.	4.9	38
68	Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmospheric Research, 2020, 237, 104859.	4.1	37
69	Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031626.	3.3	35
70	Greater committed warming after accounting for the pattern effect. Nature Climate Change, 2021, 11, 132-136.	18.8	35
71	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. Environmental Science & Technology, 2022, 56, 175-184.	10.0	35
72	Variability, timescales, and nonlinearity in climate responses to black carbon emissions. Atmospheric Chemistry and Physics, 2019, 19, 2405-2420.	4.9	34

#	Article	IF	CITATIONS
73	Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Science Advances, 2020, 6, eaaz6433.	10.3	33
74	Parametric behaviors of <scp>CLUBB</scp> in simulations of low clouds in the <scp>C</scp> ommunity <scp>A</scp> tmosphere <scp>M</scp> odel (<scp>CAM</scp>). Journal of Advances in Modeling Earth Systems, 2015, 7, 1005-1025.	3.8	32
75	The efficacy of aerosol–cloud radiative perturbations from near-surface emissions in deep open-cell stratocumuli. Atmospheric Chemistry and Physics, 2018, 18, 17475-17488.	4.9	31
76	Temporal and spatial variations of convection, clouds and precipitation over the Tibetan Plateau from recent satellite observations. Part II: Precipitation climatology derived from global precipitation measurement mission. International Journal of Climatology, 2020, 40, 4858-4875.	3.5	30
77	Observation-based estimation of aerosol-induced reduction of planetary boundary layer height. Advances in Atmospheric Sciences, 2017, 34, 1057-1068.	4.3	28
78	Impacts of Aerosol Dry Deposition on Black Carbon Spatial Distributions and Radiative Effects in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 2018, 10, 1150-1171.	3.8	28
79	Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3704-3723.	3.3	27
80	Impacts of Wildfire Aerosols on Global Energy Budget and Climate: The Role of Climate Feedbacks. Journal of Climate, 2020, 33, 3351-3366.	3.2	27
81	Aerosol effects on cirrus through ice nucleation in the Community Atmosphere Model CAM5 with a statistical cirrus scheme. Journal of Advances in Modeling Earth Systems, 2014, 6, 756-776.	3.8	26
82	Local Radiative Feedbacks Over the Arctic Based on Observed Shortâ€Term Climate Variations. Geophysical Research Letters, 2018, 45, 5761-5770.	4.0	26
83	Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models. Atmospheric Chemistry and Physics, 2019, 19, 1077-1096.	4.9	26
84	An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033423.	3.3	26
85	Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6321-6335.	3.3	23
86	An investigation of microphysics and subgridâ€scale variability in warmâ€rain clouds using the Aâ€Train observations and a multiscale modeling framework. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7493-7504.	3.3	22
87	An Evaluation of Marine Boundary Layer Cloud Property Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid Parameterization versus CLUBB. Journal of Climate, 2018, 31, 2299-2320.	3.2	21
88	Temporal and spatial variations of convection and precipitation over the Tibetan Plateau based on recent satellite observations. Part I: Cloud climatology derived from <i>CloudSat</i> and <i>CALIPSO</i> . International Journal of Climatology, 2019, 39, 5396-5412.	3.5	21
89	A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8905-8924.	3.3	20
90	WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes. Geoscientific Model Development, 2020, 13, 2125-2147.	3.6	20

#	Article	IF	CITATIONS
91	The climate impact on atmospheric stagnation and capability of stagnation indices in elucidating the haze events over North China Plain and Northeast China. Chemosphere, 2020, 258, 127335.	8.2	20
92	Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline. Atmospheric Chemistry and Physics, 2020, 20, 4999-5017.	4.9	20
93	Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors. Atmospheric Chemistry and Physics, 2021, 21, 10499-10526.	4.9	20
94	Impact of cloud radiative heating on East Asian summer monsoon circulation. Environmental Research Letters, 2015, 10, 074014.	5.2	18
95	Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites. Atmospheric Chemistry and Physics, 2018, 18, 1763-1783.	4.9	18
96	Development and Evaluation of Chemistryâ€Aerosolâ€Climate Model CAM5â€Chemâ€MAM7â€MOSAIC: Global Atmospheric Distribution and Radiative Effects of Nitrate Aerosol. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002346.	3.8	17
97	Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 2022, 15, 2881-2916.	3.6	17
98	The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models. Geoscientific Model Development, 2018, 11, 3147-3158.	3.6	16
99	Numerical modeling of ozone damage to plants and its effects on atmospheric CO2 in China. Atmospheric Environment, 2019, 217, 116970.	4.1	16
100	Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities. Atmospheric Chemistry and Physics, 2022, 22, 9129-9160.	4.9	16
101	A Community Atmosphere Model With Superparameterized Clouds. Eos, 2013, 94, 221-222.	0.1	15
102	What controls the low ice number concentration in the upper troposphere?. Atmospheric Chemistry and Physics, 2016, 16, 12411-12424.	4.9	15
103	Lowâ€Cloud Feedback in CAM5â€CLUBB: Physical Mechanisms and Parameter Sensitivity Analysis. Journal of Advances in Modeling Earth Systems, 2018, 10, 2844-2864.	3.8	15
104	Intensified modulation of winter aerosol pollution in China by El Niño with short duration. Atmospheric Chemistry and Physics, 2021, 21, 10745-10761.	4.9	14
105	OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via) Tj ETQq1 1 0.7 climate model and impacts on clouds. Atmospheric Chemistry and Physics, 2022, 22, 5223-5251.	784314 r 4.9	gBT /Overlo 14
106	Strong Precipitation Suppression by Aerosols in Marine Low Clouds. Geophysical Research Letters, 2020, 47, e2019GL086207.	4.0	13
107	Aerosol Indirect Effects on Warm Clouds in the Grid-Point Atmospheric Model of IAP LASG (GAMIL). Atmospheric and Oceanic Science Letters, 2010, 3, 237-241.	1.3	12
108	Sensitivity of summer ensembles of fledgling superparameterized U.S. mesoscale convective systems to cloud resolving model microphysics and grid configuration. Journal of Advances in Modeling Earth Systems, 2016, 8, 634-649.	3.8	12

#	Article	IF	CITATIONS
109	Multiscale Simulation of Precipitation Over East Asia by Variable Resolution CAMâ€MPAS. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002656.	3.8	12
110	Synergetic Satellite Trend Analysis of Aerosol and Warm Cloud Properties ver Ocean and Its Implication for Aerosol loud Interactions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031598.	3.3	11
111	Simulated aging processes of black carbon and its impact during a severe winter haze event in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 755, 142712.	8.0	11
112	Anthropogenic Aerosols Modulated 20th entury Sahel Rainfall Variability Via Their Impacts on North Atlantic Sea Surface Temperature. Geophysical Research Letters, 2022, 49, .	4.0	11
113	Investigating ice nucleation in cirrus clouds with an aerosolâ€enabled Multiscale Modeling Framework. Journal of Advances in Modeling Earth Systems, 2014, 6, 998-1015.	3.8	10
114	Influence of Superparameterization and a Higherâ€Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9879-9902.	3.3	10
115	Linking Deep and Shallow Convective Mass Fluxes via an Assumed Entrainment Distribution in CAM5â€CLUBB: Parameterization and Simulated Precipitation Variability. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002357.	3.8	10
116	Two-moment bulk stratiform cloud microphysics in the grid-point atmospheric model of IAP LASG (GAMIL). Advances in Atmospheric Sciences, 2013, 30, 868-883.	4.3	9
117	Impact of subgridâ€scale radiative heating variability on the stratocumulusâ€toâ€trade cumulus transition in climate models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4192-4203.	3.3	9
118	The role of carbonaceous aerosols on shortâ€ŧerm variations of precipitation over North Africa. Atmospheric Science Letters, 2016, 17, 407-414.	1.9	9
119	Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds. Journal of Climate, 2018, 31, 3301-3325.	3.2	9
120	A Cloud Top Radiative Cooling Model Coupled With CLUBB in the Community Atmosphere Model: Description and Simulation of Low Clouds. Journal of Advances in Modeling Earth Systems, 2019, 11, 979-997.	3.8	9
121	Simulated Precipitation Diurnal Variation With a Deep Convective Closure Subject to Shallow Convection in Community Atmosphere Model Version 5 Coupled With CLUBB. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002050.	3.8	9
122	Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. Geophysical Research Letters, 2020, 47, e2020GL088063.	4.0	9
123	Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1). Atmospheric Chemistry and Physics, 2021, 21, 8003-8021.	4.9	9
124	Understanding the Cold Season Arctic Surface Warming Trend in Recent Decades. Geophysical Research Letters, 2021, 48, e2021GL094878.	4.0	9
125	Modifications to <scp>WRF</scp> 's dynamical core to improve the treatment of moisture for largeâ€eddy simulations. Journal of Advances in Modeling Earth Systems, 2015, 7, 1627-1642.	3.8	8
126	Evaluation of Cloud and Precipitation Response to Aerosols in WRFâ€Chem With Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033108.	3.3	8

#	Article	IF	CITATIONS
127	Effects of Aerosols on the Precipitation of Convective Clouds: A Case Study in the Yangtze River Delta of China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7868-7885.	3.3	7
128	Intraseasonal variation and future projection of atmospheric diffusion conditions conducive to extreme haze formation over eastern China. Atmospheric and Oceanic Science Letters, 2020, 13, 346-355.	1.3	7
129	Strong Aerosol Effects on Cloud Amount Based on Longâ€Term Satellite Observations Over the East Coast of the United States. Geophysical Research Letters, 2021, 48, e2020GL091275.	4.0	7
130	Evaluation of Subgrid-Scale Hydrometeor Transport Schemes Using a High-Resolution Cloud-Resolving Model. Journals of the Atmospheric Sciences, 2015, 72, 3715-3731.	1.7	6
131	Comparison of a global-climate model simulation to a cloud-system resolving model simulation for long-term thin stratocumulus clouds. Atmospheric Chemistry and Physics, 2009, 9, 6497-6520.	4.9	5
132	Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1657-1672.	3.3	5
133	Validation of satellite-retrieved CCN based on a cruise campaign over the polluted Northwestern Pacific ocean. Atmospheric Research, 2021, 260, 105722.	4.1	5
134	Parameterizing Convective Organization Effects With a Moistureâ€PDF Approach in Climate Models: Concept and a Regional Case Simulation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	4
135	A Climatology of Merged Daytime Planetary Boundary Layer Height Over China From Radiosonde Measurements. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
136	Assessing CLUBB PDF Closure Assumptions for a Continental Shallowâ€toâ€Deep Convective Transition Case Over Multiple Spatial Scales. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002145.	3.8	3
137	Assessing aerosol indirect effect through ice clouds in CAM5. , 2013, , .		2
138	Quantifying the local and remote impacts of s <scp>ubâ€grid</scp> physical processes on the Southeast Pacific sea surface fluxes in the Community Atmosphere Model version 5 by a l <scp>imitedâ€area</scp> p <scp>arameter perturbation</scp> approach. International Journal of Climatology, 2022, 42, 1369-1387.	3.5	2
139	Long-term change in low-cloud cover in Southeast China during cold seasons. Atmospheric and Oceanic Science Letters, 2022, 15, 100222.	1.3	2
140	Effect of black carbon on mid-troposphere and surface temperature trends. , 0, , 18-33.		1
141	Development and Evaluation of an Explicit Treatment of Aerosol Processes at Cloud Scale Within a Multiâ€6cale Modeling Framework (MMF). Journal of Advances in Modeling Earth Systems, 2018, 10, 1663-1679.	3.8	1
142	A Strong Anthropogenic Black Carbon Forcing Constrained by Pollution Trends over China. Geophysical Research Letters, 0, , .	4.0	1
143	Assessment of MODIS aerosol optical depth over oceans using one-year data from maritime aerosol network. Proceedings of SPIE, 2011, , .	0.8	0
144	Facilitating International Collaboration on Climate Change Research. Bulletin of the American Meteorological Society, 2020, 101, E650-E654.	3.3	0

0

#	Article	IF	CITATIONS
145	The role of Tibetan summer low clouds in the simulation of the East Asian summer monsoon rain belt. International Journal of Climatology, 0, , .	3.5	0

146 The Effect of Including Aerosol Nucleation and Coagulation in a Global Model. , 2007, , 494-498.