Joel M Henderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6787440/publications.pdf

Version: 2024-02-01

489802 536525 2,511 31 18 29 citations g-index h-index papers 32 32 32 4502 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PODO: Trial Design: Phase 2 Study of PF-06730512 in Focal Segmental Glomerulosclerosis. Kidney International Reports, 2021, 6, 1629-1633.	0.4	4
2	KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metabolism, 2021, 33, 1042-1061.e7.	7.2	103
3	A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy. Kidney International, 2021, 100, 289-300.	2.6	25
4	T95 nucleophosmin phosphorylation as a novel mediator and marker of regulated cell death in acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F552-F561.	1.3	3
5	Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot ProcessÂStructure. American Journal of Pathology, 2020, 190, 799-816.	1.9	10
6	Control of Podocyte and Glomerular Capillary Wall Structure and Elasticity by WNK1 Kinase. Frontiers in Cell and Developmental Biology, 2020, 8, 618898.	1.8	5
7	Monoclonal IgG4/2κ Deposition Following Eculizumab Therapy for Recurrent Atypical Hemolytic Uremic Syndrome in Kidney Transplantation. Kidney Medicine, 2019, 1, 139-143.	1.0	O
8	Segmentation of Glomeruli Within Trichrome Images Using Deep Learning. Kidney International Reports, 2019, 4, 955-962.	0.4	126
9	Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks. Kidney International Reports, 2018, 3, 464-475.	0.4	114
10	Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models. Journal of the American Society of Nephrology: JASN, 2018, 29, 1501-1512.	3.0	23
11	Concurrent Presentation of Thrombotic Thrombocytopenic Purpura and Membranous Nephropathy. Kidney International Reports, 2018, 3, 476-481.	0.4	3
12	TMIGD1 acts as a tumor suppressor through regulation of p21Cip1/p27Kip1 in renal cancer. Oncotarget, 2018, 9, 9672-9684.	0.8	20
13	Targeting STUB1–tissue factor axis normalizes hyperthrombotic uremic phenotype without increasing bleeding risk. Science Translational Medicine, 2017, 9, .	5.8	38
14	SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight, 2016, 1, e86934.	2.3	34
15	Nonâ€muscle myosinâ€llA is critical for podocyte fâ€actin organization, contractility, and attenuation of cell motility. Cytoskeleton, 2016, 73, 377-395.	1.0	20
16	Pregnancy in a Patient With Primary Membranous Nephropathy and Circulating Anti-PLA2R Antibodies: A Case Report. American Journal of Kidney Diseases, 2016, 67, 775-778.	2.1	26
17	<scp>KIM</scp> â€lâ€l <scp>TIM</scp> â€lâ€mediated phagocytosis links <scp>ATG</scp> 5â€l <scp>ULK</scp> 1â€dependent clearance of apoptotic cells to antigen presentation. EMBO Journal, 2015, 34, 2441-2464.	3.5	76
18	Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis. Cell Stem Cell, 2015, 16, 51-66.	5.2	738

#	Article	IF	Citations
19	Distinct Renal Pathology and a Chemotactic Phenotype after Enterohemorrhagic Escherichia coli Shiga Toxins in Non-Human Primate Models of Hemolytic Uremic Syndrome. American Journal of Pathology, 2013, 182, 1227-1238.	1.9	35
20	$G\hat{l}\pm 12$ activation in podocytes leads to cumulative changes in glomerular collagen expression, proteinuria and glomerulosclerosis. Laboratory Investigation, 2012, 92, 662-675.	1.7	19
21	Biophysical properties of normal and diseased renal glomeruli. American Journal of Physiology - Cell Physiology, 2011, 300, C397-C405.	2.1	91
22	Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nature Genetics, 2010, 42, 72-76.	9.4	381
23	Patients with ACTN4 Mutations Demonstrate Distinctive Features of Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 961-968.	3.0	52
24	A Case of Familial Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, 1367-1374.	2.2	18
25	Novel Mutations in NPHP4 in a Consanguineous Family With Histological Findings of Focal Segmental Glomerulosclerosis. American Journal of Kidney Diseases, 2007, 50, 855-864.	2.1	16
26	Targeted Overexpression of the Transcription Factor XBP-1 in B Cells Promotes Plasma Cell and Lymphoplasmacytic Neoplasms in Transgenic Mice Blood, 2005, 106, 359-359.	0.6	4
27	α-Actinin-4-Mediated FSGS: An Inherited Kidney Disease Caused by an Aggregated and Rapidly Degraded Cytoskeletal Protein. PLoS Biology, 2004, 2, e167.	2.6	129
28	Traumatic calcinosis cutis in a dialysis patient. American Journal of Kidney Diseases, 2004, 44, e18-e21.	2.1	13
29	Gemcitabine-associated thrombotic microangiopathy. Cancer, 2004, 100, 2664-2670.	2.0	175
30	Mice deficient in \hat{I}_{\pm} -actinin-4 have severe glomerular disease. Journal of Clinical Investigation, 2003, 111, 1683-1690.	3.9	210
31	Kidney Glomerulonephritis and Renal Ischemia. , 0, , 304-316.		O